浏览全部资源
扫码关注微信
深圳大学 生物医学光子学研究中心/物理与光电工程学院,光电子器件与系统重点实验室,广东 深圳 518060
[ "何睿夫(1998-),男,安徽池州人,硕士研究生,2020年于长春理工大学获得学士学位,主要从事纳米光电子器件与材料应用的研究。E-mail: heruifu98@163.com" ]
[ "周炫(1983-),男,湖南永州人,博士,副研究员,2018年于中国香港浸会大学获得博士学位,主要从事新型光电功能材料及其在新能源与节能器件中应用的研究。E-mail: xzhou@aliyun.com" ]
纸质出版日期:2021-11-01,
收稿日期:2021-06-23,
修回日期:2021-07-15,
扫 描 看 全 文
何睿夫, 周非凡, 屈军乐, 等. 金属有机框架材料在有机钙钛矿太阳能电池中的应用进展[J]. 发光学报, 2021,42(11):1722-1738.
Rui-fu HE, Fei-fan ZHOU, Jun-le QU, et al. Research Progress of Metal-organic Frameworks in Organic Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2021,42(11):1722-1738.
何睿夫, 周非凡, 屈军乐, 等. 金属有机框架材料在有机钙钛矿太阳能电池中的应用进展[J]. 发光学报, 2021,42(11):1722-1738. DOI: 10.37188/CJL.20210208.
Rui-fu HE, Fei-fan ZHOU, Jun-le QU, et al. Research Progress of Metal-organic Frameworks in Organic Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2021,42(11):1722-1738. DOI: 10.37188/CJL.20210208.
有机钙钛矿太阳能电池(OPSCs)的能量转换效率卓越,可以媲美单晶硅太阳能电池。但是,由于有机钙钛矿材料对水和空气十分敏感,因而当前面临着器件稳定性方面的挑战。金属有机框架(MOFs)与其衍生材料具有开放式孔道结构和非常大的比表面积,可以添加剂的形式用于电子、空穴传输层和混合钙钛矿-MOF光吸收层,或作为界面修饰层有效钝化钙钛矿吸收层的缺陷,并显著提升其能量转换效率及器件稳定性。本文介绍了MOFs的相关知识与MOFs结合OPSCs的研究现状,重点综述了近五年来MOFs在OPSCs中的应用与进展。
Organic perovskite solar cells(OPSCs) have exhibited excellent power conversion efficiency
which is comparable to the monocrystalline silicon-based solar cells. But they still face the challenge of device stability due to the moisture and air sensitivities of organic perovskite materials. Metal-organic frameworks(MOFs) and their derivatives have open pore structure and large specific surface area. They can be used as additives in electron/hole transport layer
mixed perovskite MOF optical absorption layer
or as interface modification layer to effectively passivate the defects of perovskite absorption layer. In this way
the energy conversion efficiency and device stability of perovskite solar cells can be significantly improved. This paper introduces the related knowledge of MOFs and the research status of MOFs combined with OPSCs
focusing on the application and progress of MOFs in OPSCs in recent five years.
光伏技术金属有机框架材料钙钛矿太阳能电池
photovoltaic technologymetal organic framework materialsperovskite solar cells
王程博, 顾飞丹, 卞祖强, 等. 锡基钙钛矿太阳能电池研究进展[J]. 科学通报, 2021, 66(17): 2129-2138.
WANG C B, GU F D, BIAN Z Q, et al. Research advances on tin based perovskite solar cell[J]. Chin. Sci. Bull., 2021, 66(17): 2129-2138. (in Chinese)
POLMAN A, KNIGHT M, GARNETT E C, et al. Photovoltaic materials:present efficiencies and future challenges[J]. Science, 2016, 352(6283): aad4424-1-10.
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051.
NREL. Best research-cell efficiency chart [EB/OL]. 2021-07-20. https://www.nrel.gov/pv/cell-efficiency.htmlhttps://www.nrel.gov/pv/cell-efficiency.html.
宋宏伟, 徐文. 钙钛矿发光——光电器件中的光谱调控[J]. 发光学报, 2021, 42(5): 575-579.
SONG H W, XU W. Spectra control of perovskite luminescence and optoelectronic devices[J]. Chin. J. Lumin., 2021, 42(5): 575-579. (in Chinese)
CHUEH C C, CHEN C I, SU Y A, et al. Harnessing MOF materials in photovoltaic devices:recent advances, challenges, and perspectives[J]. J. Mater. Chem. A, 2019, 7(29): 17079-17095.
KUYULDAR S, GENNA D T, BURDA C. On the potential for nanoscale metal-organic frameworks for energy applications[J]. J. Mater. Chem. A, 2019, 7(38): 21545-21576.
HEO D Y, DO H H, AHN S H, et al. Metal-organic framework materials for perovskite solar cells[J]. Polymers, 2020, 12(9): 2061-1-31.
ZHOU D, ZHOU T, TIAN Y, et al. Perovskite-based solar cells:materials, methods, and future perspectives[J]. J. Nanomater., 2018, 2018-1-15.
GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nat. Photonics, 2014, 8(7): 506-514.
FROST J M, BUTLER K T, BRIVIO F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano Lett., 2014, 14(5): 2584-2590.
ZHAO Y X, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chem. Soc. Rev., 2016, 45(3): 655-689.
MENG L, YOU J B, GUO T F, et al. Recent advances in the inverted planar structure of perovskite solar cells[J]. Acc. Chem. Res., 2016, 49(1): 155-165.
LUO D Y, YANG W Q, WANG Z P, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396): 1442-1446.
TURREN-CRUZ S H, HAGFELDT A, SALIBA M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413): 449-453.
ZHENG X P, HOU Y, BAO C X, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nat. Energy, 2020, 5(2): 131-140.
GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables(version 56)[J]. Prog. Photovolt. Res. Appl., 2020, 28(7): 629-638.
VINOGRADOV A V, ZAAKE-HERTLING H, HEY-HAWKINS E. The first depleted heterojunction TiO2-MOF-based solar cell[J]. Chem. Commun., 2014, 50(71): 10210-10213.
JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nat. Energy, 2018, 3(8): 682-689.
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nat. Photonics, 2019, 13(7): 460-466.
李宗群, 张敏, 裘灵光. 发光性质可调的金属-有机骨架材料[Zn(BDC)(H2O)2-2x·(8-Hq)x]的合成及发光性质[J]. 发光学报, 2010, 31(3): 421-426.
LI Z Q, ZHANG M, QIU L G. Synthesis and fluorescent property of metal-organic frameworks [Zn(BDC)(H2O)2-2x·(8-Hq)x] with tunable fluorescence[J]. Chin. J. Lumin., 2010, 31(3): 421-426. (in Chinese)
PACHFULE P, DAS R, PODDAR P, et al. Solvothermal synthesis, structure, and properties of metal organic framework isomers derived from a partially fluorinated link[J]. Cryst. Growth Des., 2011, 11(4): 1215-1222.
NI Z, MASEL R I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis[J]. J. Am. Chem. Soc., 2006, 128(38): 12394-12395.
CUI J C, GAO N, WANG C, et al. Photonic metal-organic framework composite spheres:a new kind of optical material with self-reporting molecular recognition[J]. Nanoscale, 2014, 6(20): 11995-12001.
SON W J, KIM J, KIM J, et al. Sonochemical synthesis of MOF-5[J]. Chem. Commun., 2008, (47): 6336-6338.
CAMPAGNOL N, VAN ASSCHE T, BOUDEWIJNS T, et al. High pressure, high temperature electrochemical synthesis of metal-organic frameworks:films of MIL-100(Fe) and HKUST-1 in different morphologies[J]. J. Mater. Chem. A, 2013, 1(19): 5827-5830.
HOU X, PAN L K, HUANG S M, et al. Enhanced efficiency and stability of perovskite solar cells using porous hierarchical TiO2 nanostructures of scattered distribution as scaffold[J]. Electrochim. Acta, 2017, 236: 351-358.
SHEN D L, PANG A Y, LI Y F, et al. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties[J]. Chem. Commun., 2018, 54(10): 1253-1256.
AHMADIAN-YAZDI M R, GHOLAMPOUR N, ESLAMIAN M. Interface engineering by employing zeolitic imidazolate framework-8(ZIF-8) as the only scaffold in the architecture of perovskite solar cells[J]. ACS Appl. Energy Mater., 2020, 3(4): 3134-3143.
LEE C C, CHEN C I, LIAO Y T, et al. Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures[J]. Adv. Sci., 2019, 6(5): 1801715-1-9.
CHANG T H, KUNG C W, CHEN H W, et al. Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals[J]. Adv. Mater., 2015, 27(44): 7229-7235.
CHA M Y, DA P M, WANG J, et al. Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots[J]. J. Am. Chem. Soc., 2016, 138(27): 8581-8587.
NGUYEN T M H, BARK C W. Highly porous nanostructured NiO@C as interface-effective layer in planar n-i-p perovskite solar cells[J]. J. Alloys Compd., 2020, 841: 155711.
LI C, GUO S S, CHEN J A, et al. Mitigation of vacancy with ammonium salt-trapped ZIF-8 capsules for stable perovskite solar cells through simultaneous compensation and loss inhibition[J]. Nanoscale Adv., 2021, 3(12): 3554-3562.
朱立华, 商雪妮, 雷凯翔, 等. 应用于钙钛矿太阳能电池中金属氧化物电子传输材料的研究进展[J]. 发光学报, 2020, 41(5): 481-497.
ZHU L H, SHANG X N, LEI K X, et al. Research progress of metal oxide electron transporting materials applied in perovskite solar cells[J]. Chin. J. Lumin., 2020, 41(5): 481-497. (in Chinese)
CHEN X B, MAO S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007, 107(7): 2891-2959.
RYU U J, JEE S, PARK J S, et al. Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells[J]. ACS Nano, 2018, 12(5): 4968-4975.
NGUYEN T M H, BARK C W. Synthesis of cobalt-doped TiO2 based on metal-organic frameworks as an effective electron transport material in perovskite solar cells[J]. ACS Omega, 2020, 5(5): 2280-2286.
ZHANG Z X, LUO X S, WANG B, et al. Electron transport improvement of perovskite solar cells via a zif-8-derived porous carbon skeleton[J]. ACS Appl. Energy Mater., 2019, 2(4): 2760-2768.
HU G F, GUO W X, YU R M, et al. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect[J]. Nano Energy, 2016, 23: 27-33.
SONG J X, HU W D, WANG X F, et al. HC(NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(21): 8435-8443.
ZHANG Y N, LI B, FU L, et al. MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells[J]. Electrochim. Acta, 2020, 330: 135280.
WU S F, LI Z, LI M Q, et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage[J]. Nat. Nanotechnol., 2020, 15(11): 934-940.
LI M R, XIA D B, YANG Y L, et al. Doping of [In2(phen)3Cl6]·CH3CN·2H2O Indium-based metal-organic framework into hole transport layer for enhancing perovskite solar cell efficiencies[J]. Adv. Energy Mater., 2018, 8(10): 1702052-1-7.
LI M R, WANG J Q, JIANG A F, et al. Metal organic framework doped spiro-OMeTAD with increased conductivity for improving perovskite solar cell performance[J]. Sol. Energy, 2019, 188: 380-385.
DONG Y Y, ZHANG J, YANG Y L, et al. Self-assembly of hybrid oxidant POM@Cu-BTC for enhanced efficiency and long-term stability of perovskite solar cells[J]. Angew. Chem. Int. Ed., 2019, 58(49): 17610-17615.
HUANG L S, ZHOU X W, WU R Y, et al. Oriented haloing metal-organic framework providing high efficiency and high moisture-resistance for perovskite solar cells[J]. J. Power Sources, 2019, 433: 226699-1-8.
JUAREZ-PEREZ E J, LEYDEN M R, WANG S H, et al. Role of the dopants on the morphological and transport properties of spiro-MeOTAD hole transport layer[J]. Chem. Mater., 2016, 28(16): 5702-5709.
ZHOU X S, QIU L L, FAN R Q, et al. Toward high-efficiency and thermally-stable perovskite solar cells:a novel metal-organic framework with active pyridyl sites replacing 4-tert-butylpyridine[J]. J. Power Sources, 2020, 473: 228556.
ZHANG J D, GUO S S, ZHU M Q, et al. Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials[J]. Chem. Eng. J., 2021, 408: 127328.
WANG P, ZHANG J, ZENG Z B, et al. Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells[J]. J. Mater. Chem. C, 2016, 4(38): 9003-9008.
XU M, RONG Y G, KU Z L, et al. Improvement in solid-state dye sensitized solar cells by p-type doping with Lewis acid SnCl4[J]. J. Phys. Chem. C, 2013, 117(44): 22492-22496.
XU B, HUANG J, ÅGREN H, et al. AgTFSI as p-type dopant for efficient and stable solid-state dye-sensitized and perovskite solar cells[J]. ChemSusChem, 2014, 7(12): 3252-3256.
WANG J Q, ZHANG J, YANG Y L, et al. New insight into the Lewis basic sites in metal-organic framework-doped hole transport materials for efficient and stable perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2021, 13(4): 5235-5244.
ZHOU X S, HAO S, QIU L L, et al. Assembly of Fe(Ⅲ)-grafted metal-organic complexes as p-type dopants for efficient and stable perovskite solar cells[J]. Sol. RRL, 2021, 5(1): 2000637-1-9.
ER U, ICLI K C, OZENBAS M. Spin-coated copper(Ⅰ) thiocyanate as a hole transport layer for perovskite solar cells[J]. J. Solid State Electrochem, 2020, 24(2): 293-304.
YIN X T, GUO Y X, XIE H X, et al. Nickel oxide as efficient hole transport materials for perovskite solar cells[J]. Sol. RRL, 2019, 3(5): 1900001-1-27.
CORANI A, LI M H, SHEN P S, et al. Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p-type contact electrode[J]. J. Phys. Chem. Lett., 2016, 7: 1096-1101.
HAZEGHI F, MOZAFFARI S, GHORASHI S M B. Metal organic framework-derived core-shell CuO@NiO nanosphares as hole transport material in perovskite solar cell[J]. J. Solid State Electrochem, 2020, 24(6): 1427-1438.
XIAO Z G, DONG Q G, BI C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J]. Adv. Mater., 2014, 26(37): 6503-6509.
YUAN S, QIN J S, LOLLAR C T, et al. Stable metal-organic frameworks with group 4 metals:current status and trends[J]. ACS Cent. Sci., 2018, 4(4): 440-450.
LI M R, XIA D B, JIANG A F, et al. Enhanced crystallization and optimized morphology of perovskites through doping an indium-based metal-organic assembly:achieving significant solar cell efficiency enhancements[J]. Energy Technol., 2019, 7(5): 1900027.
ZHOU X S, QIU L L, FAN R Q, et al. Heterojunction incorporating perovskite and microporous metal-organic framework nanocrystals for efficient and stable solar cells[J]. Nano-Micro Lett., 2020, 12(1): 80-1-11.
QIU L L, XING K, ZHANG J, et al. Two-dimensional metal-organic frameworks-based grain termination strategy enables high-efficiency perovskite photovoltaics with enhanced moisture and thermal stability[J]. Adv. Funct. Mater., 2021, 31(17): 2010368.
SOWMEHESARAEE M S, RANJBAR M, ABEDI M, et al. Fabrication of lead iodide perovskite solar cells by incorporating zirconium, indium and zinc metal-organic frameworks[J]. Sol. Energy, 2021, 214: 138-148.
0
浏览量
156
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构