浏览全部资源
扫码关注微信
1.江苏师范大学 物理与电子工程学院,江苏省先进激光材料与器件重点实验室,江苏 徐州 221116
2.中国科学院 上海光学精密机械研究所,上海 201800
3.江苏大学 机械工程学院,江苏 镇江 212013
4.中国科学院 宁波材料技术与工程研究所,浙江 宁波 315201
[ "张曦月(1998-),女,江苏徐州人,硕士研究生,2020年于江苏师范大学获得学士学位,主要从事光功能陶瓷应用的研究。Email: zhangxiyuedhr@foxmail.com" ]
[ "张乐(1988-),男,山东新泰人,博士,教授,2013年于南京工业大学获得博士学位,主要从事光功能陶瓷材料的研究。Email: zhangle@jsnu.edu.cn" ]
[ "姜本学(1980-),男,山东青州人,博士,研究员,2007年于中国科学院上海光学精密机械研究所获得博士学位,主要从事激光与光电子材料的研究。Email: jiangbx@siom.ac.cn" ]
[ "刘永福(1985-),男,江苏丰县人,博士,研究员,2012年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事稀土发光材料物理、透明功能陶瓷及应用的研究。Email: liuyongfu@nimte.ac.cn" ]
纸质出版日期:2021-10-01,
收稿日期:2021-06-02,
修回日期:2021-07-01,
移动端阅览
张曦月, 张乐, 孙炳恒, 等. 高功率密度激发荧光材料的反常热猝灭效应[J]. 发光学报, 2021,42(10):1458-1481.
XI-YUE ZHANG, LE ZHANG, BING-HENG SUN, et al. Abnormal Thermal Quenching Effect of High Power Density Excited Fluorescent Materials. [J]. Chinese journal of luminescence, 2021, 42(10): 1458-1481.
张曦月, 张乐, 孙炳恒, 等. 高功率密度激发荧光材料的反常热猝灭效应[J]. 发光学报, 2021,42(10):1458-1481. DOI: 10.37188/CJL.20210202.
XI-YUE ZHANG, LE ZHANG, BING-HENG SUN, et al. Abnormal Thermal Quenching Effect of High Power Density Excited Fluorescent Materials. [J]. Chinese journal of luminescence, 2021, 42(10): 1458-1481. DOI: 10.37188/CJL.20210202.
荧光转换材料普遍存在的发光强度随温度升高而降低的热猝灭现象严重影响了器件的性能,限制了其在高功率发光二极管(LED)/激光二极管(LD)照明中的应用。然而,部分荧光材料却会出现随着温度升高发光强度增大的现象,即反常热猝灭效应。反常热猝灭作为提升发光材料及其器件应用性能的有效途径得到了广泛研究。本文总结了目前反常热猝灭效应在发光领域的研究现状及应用,阐述了发光反常热猝灭的机理,并对其未来发展趋势进行了展望,以期开发出具有更优反常热猝灭特性的新型发光材料,满足高效高功率LED/LD照明器件的应用需求。
Thermal quenching is a phenomenon that the luminescence intensity of fluorescent conversion materials decreases with the increase of temperature
and it seriously affects the performance of the devices and limits the applications in high power LED/LD lighting. However
the luminescence intensity of some fluorescent materials often increases with the rise of temperature
which is named as the abnormal thermal quenching effect. As an effective way to improve the performance of luminescent materials and devices
the abnormal thermal quenching effect has been widely studied. In this paper
the research status and application of fluorescent materials with abnormal thermal quenching effect was reviewed
the mechanism of abnormal thermal quenching effect was illustrated
and its future development trend was prospected. This review will help to develop new luminescent materials with better abnormal thermal quenching characteristics to meet the application requirements of high efficiency and high power LED/LD lighting devices.
高功率密度LED/LD照明热猝灭现象反常热猝灭效应
high power densityLED/LD lightingthermal quenching phenomenonabnormal thermal quenching effect
LIU M M, WAN Q, WANG H M, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J].Nat. Photonics, 2021, 15(5): 379-385.
ESPASA A, LANG M, AGUIÑOC F, et al. Long-living and highly efficient bio-hybrid light-emitting diodes with zero-thermal-quenching biophosphors[J].Nat. Commun., 2020, 11(1): 879-1-10.
LING J R, XU W T, YANG J, et al. The effect of Lu3+ doping upon YAG∶Ce phosphor ceramics for high-power white LEDs[J].J. Eur. Ceram. Soc., 2021, 41(12): 5967-5976.
HE S, ZHANG L L, WU H, et al. Efficient super broadband NIR Ca2LuZr2Al3O12∶Cr3+, Yb3+garnet phosphor for pc-LED light source toward NIR spectroscopy applications[J].Adv. Opt. Mater., 2020, 8(6): 1901684.
LIU X, QIAN X L, ZHENG P, et al. Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices[J].J. Adv. Ceram., 2021, 10(4): 729-740.
DANG P P, LIU D J, LI G G, et al. Recentadvances in bismuth ion-doped phosphor materials: structure design, tunable photoluminescence properties, and application in white LEDs[J].Adv. Opt. Mater., 2020, 8(16): 1901993.
HU T, GAO Y, MOLOKEEV M S, et al. Eu2+stabilized at octahedrally coordinated Ln3+site enabling red emission in Sr3LnAl2O7.5 (Ln=Y or Lu) phosphors[J].Adv. Opt. Mater., 2021, 9(9): 2100077.
ZHAO M, LIAO H X, MOLOKEEV M S, et al. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition[J].Light: Sci. Appl., 2019, 8: 38-1-9.
ZHOU T Y, HOU C, ZHANG L, et al. Efficient spectral regulation in Ce∶Lu3(Al, Cr)5O12 and Ce∶Lu3(Al, Cr)5O12/Ce∶Y3Al5O12 transparent ceramics with high color rendering index for high-power white LEDs/LDs[J].J. Adv. Ceram., 2021, doi: 10.21203/rs.3.rs-142225/v1http://doi.org/10.21203/rs.3.rs-142225/v1.
PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting[J].Nat. Mater., 2015, 14(5): 454-458.
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]∶Eu2+ as a next-generation LED-phosphor material[J].Nat. Mater., 2014, 13(9): 891-896.
GEORGE N C, PELL A J, DANTELLE G, et al. Local environments of dilute activator ions in the solid-state lighting phosphor Y3-xCexAl5O12[J].Chem. Mater., 2013, 25(20): 3979-3995.
KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor[J].Nat. Mater., 2017, 16(5): 543-550.
YAO Q, HU P, SUN P, et al. YAG∶Ce3+transparent ceramic phosphors brighten the next-generation laser-driven lighting[J].Adv. Mater., 2020, 32(19): 1907888.
DING H, LIU Z H, HU P, et al. High efficiency green-emitting LuAG∶Ce ceramic phosphors for laser diode lighting[J].Adv. Opt. Mater., 2021, 9(8): 2002141.
STREK W, CICHY B, RADOSINSKI L, et al. Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene[J].Light: Sci. Appl., 2015, 4(1): e237-1-8.
SCHÜTT F, ZAPF M, SIGNETTI S, et al. Conversionless efficient and broadband laser light diffusers for high brightness illumination applications[J].Nat. Commun., 2020, 11(1): 1437-1-10.
胡松. 高亮白光LED用稀土掺杂荧光陶瓷的制备与性能研究[D].南京: 南京工业大学, 2017.
HU S. Fabrication and Properties of Rare-earth Doped Ceramic Phosphors for High-power White Light-emitting Diodes[D].Nanjing: Nanjing University of Technology, 2017. (in Chinese)
LIN Y C, BETTINELLI M, KARLSSON M. Unraveling themechanisms of thermal quenching of luminescence in Ce3+-doped garnet phosphors[J].Chem. Mater., 2019, 31(11): 3851-3862.
HERMUS M, PHAN P C, DUKE A C, et al. Tunable optical properties and increased thermal quenching in the blue-emitting phosphor series: Ba2(Y1-xLux)5B5O17∶Ce3+ (x=0-1)[J].Chem. Mater., 2017, 29(12): 5267-5275.
SHARMA S K, LIN YC, CARRASCO I, et al. Weak thermal quenching of the luminescence in the Ca3Sc2Si3O12∶Ce3+ garnet phosphor[J].J. Mater. Chem. C, 2018, 6(33): 8923-8933.
LIN Y C, BETTINELLI M, SHARMA S K, et al. Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12∶Ce3+ phosphor for white light emitting diodes[J].J. Mater. Chem. C, 2020, 8(40): 14015-14027.
QIAO J W, NING L X, MOLOKEEV M S, et al. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence[J].J. Am. Chem. Soc., 2018, 140(30): 9730-9736.
LI J H, YAN J, WEN D W, et al. Advanced red phosphors for white light-emitting diodes[J].J. Mater. Chem. C, 2016, 4(37): 8611-8623.
王金迪, 黄帅, 尚蒙蒙. Eu2+掺杂UCr4C4-型窄带发射荧光材料的研究进展及应用[J].发光学报, 2020, 41(10): 1214-1233.
WANG J D, HUANG S, SHANG M M. Advances in Eu2+ doped UCr4C4-type phosphors with narrow-band emissions and their applications[J].Chin. J. Lumin., 2020, 41(10): 1214-1233. (in Chinese)
JI X Y, ZHANG J L, LI Y, et al. Improving quantum efficiency and thermal stability in blue-emitting Ba2-xSrxSiO4∶Ce3+ phosphor via solid solution[J].Chem. Mater., 2018, 30(15): 5137-5147.
ZHAO M, XIA Z G, HUANG X X, et al. Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability[J].Sci. Adv., 2019, 5(1): eaav0363-1-7.
TANG Z B, ZHANG G Y, WANG Y H. Design and development of a bluish-green luminescent material (K2HfSi3O9∶Eu2+) with robust thermal stability for white light-emitting diodes[J].ACS Photonics, 2018, 5(9): 3801-3813.
WEI Q, DING J Y, WANG Y H. A novel tunable extra-broad yellow-emitting nitride phosphor with zero-thermal-quenching property[J].Chem. Eng. J., 2020, 386: 124004.
FAN X T, CHEN W B, XIN S Y, et al. Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps[J].J. Mater. Chem. C, 2018, 6(12): 2978-2982.
GENG X, XIE Y, MA Y Y, et al. Abnormal thermal quenching and application for w-LEDs: double perovskite Ca2InSbO6∶Eu3+ red-emitting phosphor[J].J. Alloys Compd., 2020, 847: 156249.
LIU G Y, RAO G H, FENG X M, et al. Structural transition and atomic ordering in the non-stoichiometric double perovskite Sr2FexMo2-xO6[J].J. Alloys Compd., 2003, 353(1-2): 42-47.
HE L Z, SONG Z, XIANG Q C, et al. Relationship between thermal quenching of Eu2+ luminescence and cation ordering in (Ba1-xSrx)2SiO4∶Eu phosphors[J].J. Lumin., 2016, 180: 163-168.
LIN C C, TSAI Y T, JOHNSTON H E, et al. Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors[J].J. Am. Chem. Soc., 2017, 139(34): 11766-11770.
KIM Y H, KIM H J, ONG S P, et al. Cation-size mismatch as a design principle for enhancing the efficiency of garnet phosphors[J].Chem. Mater., 2020, 32(7): 3097-3108.
WANG X C, ZHAO Z Y, WU Q S, et al. Structure, photoluminescence and abnormal thermal quenching behavior of Eu2+-doped Na3Sc2(PO4)3: a novel blue-emitting phosphor for n-UV LEDs[J].J. Mater. Chem. C, 2016, 4(37): 8795-8801.
LIU Z H, ZHOU T R, YANG C, et al. Tunable thermal quenching properties of Na3Sc2(PO4)3∶Eu2+ phosphors tailored by phase transformation details[J].DaltonTrans., 2020, 49(11): 3615-3621.
ZHANG B B, CHEN J K, MA J P, et al. Antithermal quenching of luminescence in zero-dimensional hybridmet al halide solids[J].J. Phys. Chem. Lett., 2020, 11(8): 2902-2909.
LINDERÄLV C, ÅBERG D, ERHART P. Luminescence quenching via deep defect states: a recombination pathwayvia oxygen vacancies in Ce-doped YAG[J].Chem. Mater., 2021, 33(1): 73-80.
HU T, MOLOKEEV M S, XIA Z G, et al. Aliovalent substitution toward reinforced structural rigidity in Ce3+-doped garnet phosphors featuring improved performance[J].J. Mater. Chem. C, 2019, 7(46): 14594-14600.
GEORGE N C, BRGOCH J, PELL A J, et al. Correlating local compositions and structures with the macroscopic optical properties of Ce3+-doped CaSc2O4, an efficient green-emitting phosphor[J].Chem. Mater., 2017, 29(8): 3538-3546.
DENAULT K A, BRGOCH J, KLOßS D, et al. Average and local structure, debye temperature, and structural rigidity in some oxide compounds related to phosphor hosts[J].ACS Appl. Mater. Interfaces, 2015, 7(13): 7264-7272.
XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs[J].Prog. Mater. Sci., 2016, 84: 59-117.
TIAN J H, SUN X W, SONG T, et al. Phase transition and high-pressure thermodynamic properties of CdN derived from first-principles and quasi-harmonic Debye model[J].Comput. Theor. Chem., 2017, 1120: 91-95.
FRANCISCO E, RECIO J M, BLANCO M A, et al. Quantum-mechanical study of thermodynamic and bonding properties of MgF2[J].J. Phys. Chem. A, 1998, 102(9): 1595-1601.
BRGOCH J, BORG C K H, DENAULT K A, et al. An efficient, thermally stable cerium-based silicate phosphor for solid state white lighting[J].Inorg. Chem., 2013, 52(14): 8010-8016.
GAO T Y, TIAN J H, LIU Y H, et al. Garnet phosphors for white-light-emitting diodes: modification and calculation[J].Dalton Trans., 2021, 50(11): 3769-3781.
MA Y L, ZHANG L, ZHOU T Y, et al. High recorded color rendering index in single Ce, (Pr, Mn)∶YAG transparent ceramics for high-power white LEDs/LDs[J].J. Mater. Chem. C, 2020, 8(13): 4329-4337.
HUA H, FENG S W, OUYANG Z Y, et al. YAGG∶Ce transparent ceramics with high luminous efficiency for solid-state lighting application[J].J. Adv. Ceram., 2019, 8(3): 389-398.
LING J R, ZHOU Y F, XU W T, et al. Red-emitting YAG∶Ce, Mn transparent ceramics for warm WLEDs application[J].J. Adv. Ceram., 2020, 9(1): 45-54.
袁明星, 周天元, 周伟, 等. 太阳光直接泵浦固体激光器研究进展[J].发光学报, 2021, 42(1): 10-27.
YUAN M X, ZHOU T Y, ZHOU W, et al. Research progress of solar directly pumped solid-state laser[J].Chin.J. Lumin., 2021, 42(1): 10-27. (in Chinese)
ZHOU T Y, ZHANG L, LI Z, et al. Enhanced conversion efficiency of Cr4+ ion in Cr∶YAG transparent ceramic by optimizing the annealing process and doping concentration[J].J. Alloys Compd., 2017, 703: 34-39.
BLACK A P, DENAULT K A, ORÓ-SOLÉ J, et al. Red luminescence and ferromagnetism in europium oxynitridosilicates with a β-K2SO4 structure[J].Chem. Commun., 2015, 51(11): 2166-2169.
ZHANG S Y, NAKAI Y, TSUBOI T, et al. The thermal stabilities of luminescence and microstructures of Eu2+-doped KBaPO4 and NaSrPO4 with β-K2SO4 type structure[J].Inorg. Chem., 2011, 50(7): 2897-2904.
TANG Y S, HU S F, LIN C C, et al. Thermally stable luminescence of KSrPO4∶Eu2+ phosphor for white light UV light-emitting diodes[J].Appl. Phys. Lett., 2007, 90(15): 151108-1-3.
赵鸣, 廖泓旭, 夏志国. Eu2+掺杂UCr4C4基窄带硅酸盐荧光粉的研究进展与应用[J].中国稀土学报, 2020, 38(3): 257-277.
ZHAO M, LIAO H X, XIA Z G. Progress and application of Eu2+ -doped narrow-band silicate phosphors with UCr4C4-related type structure[J].J. Chin. Soc. Rare Earths, 2020, 38(3): 257-277. (in Chinese)
ZHAO M, LIAO H X, NING L X, et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2∶Eu2+ phosphor for backlight display application[J].Adv. Mater., 2018, 30(38): 1802489.
XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications[J].Chem. Soc. Rev., 2017, 46(1): 275-299.
XIA Z G, XU Z H, CHEN M Y, et al. Recent developments in the new inorganic solid-state LED phosphors[J].Dalton Trans., 2016, 45(28): 11214-11232.
WEI Y, GAO Z Y, LIU S W, et al. Highly efficient green-to-yellowish-orange emitting Eu2+-doped pyrophosphate phosphors with superior thermal quenching resistance for w-LEDs[J].Adv. Opt. Mater., 2020, 8(6): 1901859.
ZHONG J Y, ZHUO Y, HARIYANI S, et al. Closing the cyan gap toward full-spectrum LED lighting with NaMgBO3∶Ce3+[J].Chem. Mater., 2020, 32(2): 882-888.
XU S C, LI P L, WANG Z J, et al. Luminescence and energy transfer of Eu2+/Tb3+/Eu3+ in LiBaBO3 phosphors with tunable-color emission[J].J. Mater. Chem. C, 2015, 3(35): 9112-9121.
LIU D J, DANG P P, YUN X H, et al. Luminescence color tuning and energy transfer properties in (Sr, Ba)2LaGaO5∶Bi3+, Eu3+ solid solution phosphors: realization of single-phased white emission for WLEDs[J].J. Mater. Chem. C, 2019, 7(43): 13536-13547.
KANG F W, SUN G H, WANG A W, et al. Multicolor tuning and temperature-triggered anomalous Eu3+-related photoemission enhancement via interplay of accelerated energy transfer and release of defect-trapped electrons in the Tb3+, Eu3+-doped strontium-aluminum chlorites[J].ACS Appl. Mater. Interfaces, 2018, 10(42): 36157-36170.
KUMAR K N, VIJAYALAKSHMI L, KIM J S. Enhanced red luminescence quantum yield from Gd3+/Eu3+∶CaLa2ZnO5 phosphor spheres for photonic applications[J].Mater. Res. Bull., 2018, 103: 234-241.
TANG H, ZHANG X Y, CHENG L Q, et al. Photoluminescence properties and energy transfer mechanisms of Na4CaSi3O9∶Sm3+, Eu3+ novel orange-red phosphors[J].J. Lumin., 2019, 214: 116532.
SHI R, NING L X, WANG Z Q, et al. Zero-thermal quenching of Mn2+ red luminescence via efficient energy transfer from Eu2+ in BaMgP2O7[J].Adv. Opt. Mater., 2019, 7(23): 1901187.
WEI Y, YANG H, GAO Z Y, et al. Strategies for designing antithermal-quenching red phosphors[J].Adv. Sci., 2020, 7(8): 1903060-1-9.
LI J Y, DING J Y, CAO Y X, et al. Color-tunable phosphor [Mg1.25Si1.25Al2.5]O3N3∶Eu2+—a new modified polymorph of AlON with double sites related luminescence and low thermal quenching[J].ACS Appl. Mater. Interfaces, 2018, 10(43): 37307-37315.
LIU H L, LIU X Q, WANG X, et al. Unusual concentration induced antithermal quenching of the Eu2+ emission at 490 nm in Sr4Al14O25∶Eu2+ for near ultraviolet excited white LEDs[J].J. Am. Ceram. Soc., 2020, 103(10): 5758-5768.
EVANS J S O, MARY T A, SLEIGHT A W. Negative thermal expansion in a large molybdate and tungstate family[J].J. Solid State Chem., 1997, 133(2): 580-583.
MILLER W, SMITH C W, MACKENZIE D S, et al. Negative thermal expansion: a review[J].J. Mater. Sci., 2009, 44(20): 5441-5451.
GUZMÁN-AFONSO C, GONZÁLEZ-SILGO C, GONZÁLEZ-PLATAS J, et al. Structural investigation of the negative thermal expansion in yttrium and rare earth molybdates[J].J. Phys.: Condens. Matter., 2011, 23(32): 325402-1-9.
蔡方硕, 黄荣进, 李来风. 负热膨胀材料研究进展[J].科技导报, 2008, 26(12): 84-88.
CAI F S, HUANG R J, LI L F.Advances in negative thermal expansion materials[J].Sci.Technol. Rev., 2008, 26(12): 84-88. (in Chinese)
谭强强, 张中太, 方克明. 复合氧化物负热膨胀材料研究进展[J].功能材料, 2003, 34(4): 353-356.
TAN Q Q, ZHANG Z T, FANG K M. Developments of negative thermal expansion materials in complex oxides[J].J. Funct. Mater., 2003, 34(4): 353-356. (in Chinese)
ZOU H, YANG X Q, CHEN B, et al. Thermal enhancement of upconversion by negative lattice expansion in orthorhombic Yb2W3O12[J].Angew. Chem. Int. Ed., 2019, 58(48): 17255-17259.
ZOU H, CHEN B, HU Y F, et al. Simultaneous enhancement and modulation of upconversion by thermal stimulation in Sc2Mo3O12 crystals[J].J. Phys. Chem. Lett., 2020, 11(8): 3020-3024.
LIU B, SHI C S, ZHANG Q L, et al. Temperature dependence of GdVO4∶Eu3+ luminescence[J].J. Alloys Compd., 2002, 333(1-2): 215-218.
DENG J K, LI W, ZHANG H R, et al. Eu3+-doped phosphor-in-glass: a route toward tunable multicolor materials for near-UV high-power warm-white LEDs[J].Adv. Opt. Mater., 2017, 5(3): 1600910.
LIU B, GU M, LIU X L, et al. Enhanced luminescence through ion-doping-induced higher energy phonons in GdTaO4∶Eu3+ phosphor[J].Appl. Phys. Lett., 2009, 94(6): 061906-1-3.
CHEN J J, ZHAO Y, MAO Z Y, et al. Investigation of thermal quenching and abnormal thermal quenching in mixed valence Eu co-doped LaAlO3 phosphor[J].J. Lumin., 2017, 186: 72-76.
ZHANG J C, ZHANG J L, ZHOU W L, et al. Composition screening in blue-emitting Li4Sr1+xCa0.97-x(SiO4)2∶Ce3+ phosphors for high quantum efficiency and thermally stable photoluminescence[J].ACS Appl. Mater. Interfaces, 2017, 9(36): 30746-30754.
TANG F, SU Z C, YE H G, et al. Large negative-thermal-quenching effect in phonon-induced light emissions in Mn4+-activated fluoride phosphor for warm-white light-emitting diodes[J].ACS Omega, 2018, 3(10): 13704-13710.
LANG T C, HAN T, FANG S Q, et al. Improved phase stability of the metastable K2GeF6∶Mn4+ phosphors with high thermal stability and water-proof property by cation substitution[J].Chem. Eng. J., 2020, 380: 122429.
HE S A, XU F F, HAN T T, et al. A Mn4+-doped oxyfluoride phosphor with remarkable negative thermal quenching and high color stability for warm WLEDs[J].Chem. Eng. J., 2020, 392: 123657-1-10.
KANG F W, PENG M Y, ZHANG Q Y, et al. Abnormal anti-quenching and controllable multi-transitions of Bi3+ luminescence by temperature in a yellow-emitting LuVO4∶Bi3+ phosphor for UV-converted white LEDs[J].Chem. Eur. J., 2014, 20(36): 11522-11530.
WEI Y, YANG H, GAO Z Y, et al. Anti-thermal-quenching Bi3+ luminescence in a cyan-emitting Ba2ZnGe2O7∶Bi phosphor based on zinc vacancy[J].Laser Photonics Rev., 2020, 15(1): 2000048-1-10.
LEE H S, YOO J W. Yellow phosphors coated with TiO2 for the enhancement of photoluminescence and thermal stability[J].Appl. Surf. Sci., 2011, 257(20): 8355-8359.
ZHUANG J Q, XIA Z G, LIU H K, et al. The improvement of moisture resistance and thermal stability of Ca3SiO4Cl2∶Eu2+ phosphor coated with SiO2[J].Appl. Surf. Sci., 2011, 257(9): 4350-4353.
LI S X, ZHU Q Q, TANG D M, et al. Al2O3-YAG∶Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting[J].J. Mater. Chem. C, 2016, 4(37): 8648-8654.
ZHAO H Y, LI Z, ZHANG M W, et al. High-performance Al2O3-YAG∶Ce composite ceramic phosphors for miniaturization of high-brightness white light-emitting diodes[J].Ceram. Int., 2020, 46(1): 653-662.
GU C, WANG X J, XIA C, et al. A new CaF2-YAG∶Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs[J].J. Mater. Chem. C, 2019, 7(28): 8569-8574.
XIE W Q, LI P P, WANG Y, et al. Zero thermal-quenching photoluminescence in fresnoite glass achieved with the assistance of carrier compensating and surface crystal clusters[J].J. Mater. Chem. C, 2019, 7(28): 8655-8659.
ZHENG R L, ZHANG Q, GAO Y J, et al. A double-layer white light converter with high-efficiency heat transfer structure for high-power NUV LEDs/LDs[J].ACS Appl. Electron. Mater., 2019, 1(10): 2157-2165.
ZHOU Y N, ZHUANG W D, HU Y S, et al. Cyan-green phosphor (Lu2M)(Al4Si)O12∶Ce3+ for high-quality LED lamp: tunable photoluminescence properties and enhanced thermal stability[J].Inorg. Chem., 2019, 58(2): 1492-1500.
MA Y L, ZHANG L, ZHOU T Y, et al. Weak thermal quenching and tunable luminescence in Ce∶Y3(Al, Sc)5O12 transparent ceramics for high power white LEDs/LDs[J].Chem. Eng. J., 2020, 398: 125486-1-14.
MA Y L, ZHANG L, ZHOU T Y, et al. High quantum efficiency Ce∶(Lu, Y)3(Al, Sc)2Al3O12 transparent ceramics with excellent thermal stability for high-power white LEDs/LDs[J].J. Mater. Chem. C, 2020, 8(46): 16427-16435.
MA Y L, ZHANG L, ZHOU T Y, et al. Dual effect synergistically triggered Ce∶(Y, Tb)3(Al, Mn)5O12 transparent ceramics enabling a high color-rendering index and excellent thermal stability for white LEDs[J].J. Eur. Ceram. Soc., 2021, 41(4): 2834-2846.
WANG Y C, DING J Y, ZHOU X F, et al. Promotion of efficiency and thermal stability by restraining dynamic energy migration based on the highly symmetric rigid structure in the n-UV excitation green emission garnet phosphors[J].Chem. Eng. J., 2020, 381: 122528.
RAUT S K, DHOBLE N S, DHOBLE S J. Optical properties of Eu, Dy, Mn activated M2SiO4, (M2=Ca, Sr, Zn) orthosilicate phosphors[J].J. Lumin., 2013, 134: 325-332.
何丽珠. Ba2SiO4∶Eu2+基系列荧光粉的制备及构效关系研究[D].北京: 北京科技大学, 2018.
HE L Z. Study on Synthesis and the Structure-property Relationship of Ba2SiO4: Eu2+ Based Phosphors[D].Beijing: University of Science and Technology Beijing, 2018. (in Chinese)
DENAULT K A, BRGOCH J, GAULTOIS M W, et al. Consequences of optimal bond valence on structural rigidity and improved luminescence properties in SrxBa2-xSiO4∶Eu2+orthosilicate phosphors[J].Chem. Mater., 2014, 26(7): 2275-2282.
LIU Y F, ZHANG J X, ZHANG C H, et al. Ba9Lu2Si6O24∶Ce3+: an efficient green phosphor with high thermal and radiation stability for solid-state lighting[J].Adv. Opt. Mater., 2015, 3(8): 1096-1101.
王宝辰. 硅(锗)酸盐发光材料的晶体结构与光谱调节[D].北京: 中国地质大学(北京), 2020.
WANG B C. Crystal Structure and Spectral Tuning of Silicate(Germanate) Luminescent Materials[D].Beijing: China University of Geosciences (Beijing), 2020. (in Chinese)
HUO J S, YU A W, NI Q W, et al. Efficient energy transfer from trap levels to Eu3+leads to antithermal quenching effect in high-power white light-emitting diodes[J].Inorg. Chem., 2020, 59(20): 15514-15525.
YOU S H, LI S X, ZHENG P, et al. A thermally robust La3Si6N11∶Ce-in-glass film for high-brightness blue-laser-driven solid state lighting[J].Laser Photonics Rev., 2019, 13(2): 1800216-1-10.
XIE R J, HIROSAKI N, KIMURA N, et al. 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors[J].Appl. Phys. Lett., 2007, 90(19): 191101-1-3.
XIE R J, HINTZEN H T. Optical properties of (Oxy)nitride materials: a review[J].J. Am. Ceram. Soc., 2013, 96(3): 665-687.
岳相铭, 林航, 林世盛, 等. La3Si6N11∶Ce3+荧光玻璃陶瓷及其在高功率固态照明中的应用[J].发光学报, 2020, 41(12): 1529-1537.
YUE X M, LIN H, LIN S S, et al. La3Si6N11∶Ce3+luminescent glass ceramics applicable to high-power solid-state lighting[J].Chin. J. Lumin., 2020, 41(12): 1529-1537. (in Chinese)
TSAI Y T, CHIANG C Y, ZHOU W Z, et al. Structural ordering and charge variation induced by cation substitution in (Sr, Ca)AlSiN3∶Eu phosphor[J].J. Am. Chem. Soc., 2015, 137(28): 8936-8939.
TAKEDA T, HIROSAKI N, FUNAHSHI S, et al. Narrow-band green-emitting phosphor Ba2LiSi7AIN12∶Eu2+ with high thermal stability discovered by a single particle diagnosis approach[J].Chem. Mater., 2015, 27(17): 5892-5898.
郭锐, 汤松龄, 程抱昌, 等. 白光LED用Eu3+激活红色荧光粉的研究进展[J].材料导报, 2013, 27(15): 1-7.
GUO R, TANG S L, CHENG B C, et al. Research progress on Eu3+-activated red phosphors for white light-emitting diodes[J].Mater. Rev., 2013, 27(15): 1-7. (in Chinese)
KIM Y H, HA J, IM W B. Towards green synthesis of Mn4+-doped fluoride phosphors: a review[J].J. Mater. Res. Technol., 2021, 11: 181-195.
SHAO Q Y, WANG L, SONG L, et al. Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6∶Mn4+ phosphor[J].J. Alloys Compd., 2017, 695: 221-226.
张国有, 赵晓霞, 孟庆裕, 等. 白光LED用红色荧光粉Gd2Mo3O9∶Eu3+的制备及表征[J].发光学报, 2007, 28(1): 57-61.
ZHANG G Y, ZHAO X X, MENG Q Y, et al. Preparation and properties of red emitting phosphor Gd2Mo3O9∶Eu3+ for white LEDs[J].Chin. J. Lumin., 2007, 28(1): 57-61. (in Chinese)
耿秀娟, 田彦文, 陈永杰, 等. 白光LED用钨/钼酸盐红色荧光粉的研究进展[J].材料导报, 2010, 24(13): 54-57.
GENG X J, TIAN Y W, CHEN Y J, et al. Progress in studies on tungstate and molybdate red emitting phosphor used for white-LED[J].Mater. Rev., 2010, 24(13): 54-57. (in Chinese)
刘英. 稀土钨钼酸盐的制备、结构与性能研究[D].长沙: 中南大学, 2012.
LIU Y. Synthesis, Structure and Properties of Rare Earth Tungstates and Molybdates[D].Changsha: Central South University, 2012. (in Chinese)
ZHU R, JIA K, BI Z, et al. Realizing white emission in Sc2(MoO4)3∶Eu3+/Dy3+/Ce3+ phosphors through computation and experiment[J].J. Solid State Chem., 2020, 290: 121592.
HUIGNARD A, BUISSETTE V, FRANVILLE A C, et al. Emission processes in YVO4∶Eu nanoparticles[J].J. Phys. Chem. B, 2003, 107(28): 6754-6759.
ZHANG X G, ZHU Z P, GUO Z Y, et al. A zero-thermal-quenching and color-tunable phosphor LuVO4∶Bi3+, Eu3+ for NUV LEDs[J].Dyes Pigm., 2018, 156: 67-73.
0
浏览量
930
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构