浏览全部资源
扫码关注微信
江苏科技大学 理学院, 江苏 镇江 212100
[ "张琼(1998-),女,云南宣威人,硕士研究生,2021年于江苏科技大学获得学士学位,主要从事半导体发光材料及钙钛矿太阳能电池的研究。 E-mail: 18362885213@163.com" ]
[ "戴俊(1981-),男,江苏扬州人,博士,教授,博士研究生导师,2012年于东南大学获得博士学位,主要从事半导体发光材料及器件的研究。 E-mail: daijun@just.edu.cn" ]
纸质出版日期:2021-09-01,
收稿日期:2021-05-25,
修回日期:2021-07-06,
移动端阅览
张琼, 吴悦嘉, 冯艳琴, 等. Cs0.05FA0.79MA0.16PbI2.52Br0.48钙钛矿薄膜的变温光致发光特性[J]. Chinese Journal of Luminescence, 2021,42(9):1396-1402.
QIONG ZHANG, YUE-JIA WU, YAN-QIN FENG, et al. Temperature-dependent Photoluminescence Properties of Cs0.05FA0.79MA0.16PbI2.52Br0.48 Perovskite Thin Film. [J]. 发光学报, 2021, 42(9): 1396-1402.
张琼, 吴悦嘉, 冯艳琴, 等. Cs0.05FA0.79MA0.16PbI2.52Br0.48钙钛矿薄膜的变温光致发光特性[J]. Chinese Journal of Luminescence, 2021,42(9):1396-1402. DOI: 10.37188/CJL.20210195.
QIONG ZHANG, YUE-JIA WU, YAN-QIN FENG, et al. Temperature-dependent Photoluminescence Properties of Cs0.05FA0.79MA0.16PbI2.52Br0.48 Perovskite Thin Film. [J]. 发光学报, 2021, 42(9): 1396-1402. DOI: 10.37188/CJL.20210195.
报道了Cs
0.05
FA
0.79
MA
0.16
PbI
2.52
Br
0.48
钙钛矿薄膜的变温光致发光特性. 采用一步旋涂法,用氯苯作反溶剂制备了Cs
0.05
FA
0.79
MA
0.16
PbI
2.52
Br
0.48
钙钛矿薄膜,并对其表面形貌和结晶质量进行了表征. X射线衍射(XRD)分析结果表明其为四方钙钛矿结构. 钙钛矿薄膜表面均匀致密,晶粒尺寸约为300 nm. 在5~200 K温度范围内测量了光致发光强度,结果表明,光致发光光谱连续蓝移约9.36 nm,没有相变引起的反转红移. 光致发光强度随温度的升高呈双指数降低,由Arrhenius方程拟合得到了两个热激活能. 通过玻色-爱因斯坦双谐振子模型对光学带隙进行了拟合,并对非重整化带隙能量、声学声子能量和光学声子能量也进行了拟合. 通过Segall公式拟合光致发光的半峰宽(FWHM),研究了激子-声子相互作用对光致发光展宽的影响. 在10 K和100 K时,光致发光主要来自激子复合;而在200 K时,辐射复合主要来自自由-束缚对和施主-受主对,这意味着缺陷相关的光致发光是在高温下产生的. 本文详细的光学参数可以为钙钛矿型光电器件的研究提供物理基础.
This paper reports the temperature-dependent photoluminescence properties of Cs
0.05
FA
0.79
MA
0.16
PbI
2.52
-Br
0.48
perovskite thin film. The Cs
0.05
FA
0.79
MA
0.16
PbI
2.52
Br
0.48
perovskite thin film was prepared by one-step spin coating with chlorobenzene anti-solvent treatment
and the surface morphology and crystallization quality were characterized. The X-ray diffraction(XRD) indicates that the Cs
0.05
FA
0.79
MA
0.16
PbI
2.52
Br
0.48
has a typical tetragonal perovskite structure. The perovskite film has a uniform and dense surface
and the grain size is about 300 nm. The photoluminescence intensity was measured in the temperature range of 5-200 K. The photoluminescence spectra show a continuous blue shift of about 9.36 nm
and there is no reversal redshift induced by phase transition. The photoluminescence intensity shows a bi-exponential quenching with the increase of temperature
and two thermal activation energies are obtained by Arrhenius equation. The optical bandgap is fitted by the Bose-Einstein double harmonic oscillator model
and the non-renormalized bandgap energy
the energies of acoustic phonon and optical phonon were fitted. The photoluminescence broadening mechanism was studied by the Segall formula. At 10 K and 100 K
the photoluminescence is mainly from exciton recombination
while at 200 K
the radiation recombination is mainly from free-to-bound and donor-acceptor pairs
which means the defect associated photoluminescence arises at high temperature. The detailed optical parameters in our paper can provide a physical foundation for further optimization of perovskite optoelectronic devices.
钙钛矿薄膜变温光致发光激子-声子相互作用
perovskite thin filmphotoluminescenceexciton-phonon interaction
DAI J, ZHENG H G, ZHU C, et al. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures [J].J. Mater. Chem. C, 2016, 4(20):4408-4413.
ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J].Science, 2014, 345(6196):542-546.
ZHANG C R, DUAN J J, QIN F F, et al. CsPbBr3 interconnected microwire structure:temperature-related photoluminescence properties and its lasing action [J].J. Mater. Chem. C, 2019, 7(34):10454-10459.
SUN L W, WANG R, WANG W, et al. Excitonic optical properties of cesium trifluoroacetate induced CsPbBr3 thin film with anti-solvent treatment [J].Opt. Mater., 2020, 106:110005-1-7.
CHEN Y H, TAN S Q, LI N X, et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics [J].Joule, 2020, 4(9):1961-1976.
BING J M, HUANG S J, HO-BAILLIE A W Y. A review on halide perovskite film formation by sequential solution processing for solar cell applications [J].Energy Technol., 2020, 8(4):1901114-1-22.
LIU Y, CHEN P A, HU Y Y. Recent developments in fabrication and performance of metal halide perovskite field-effect transistors [J].J. Mater. Chem. C, 2020, 8(47):16691-16715.
DUAN J L, XU H Z, SHA W E I, et al. Inorganic perovskite solar cells:an emerging member of the photovoltaic community [J].J. Mater. Chem. A, 2019, 7(37):21036-21068.
SHI L, BUCKNALL M P, YOUNG T L, et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells [J].Science, 2020, 368(6497):eaba2412-1-7.
KOGO A, CHIKAMATSU M. Cesium iodide post-treatment of organic-inorganic perovskite crystals to improve photovoltaic performance and thermal stability [J].Nanoscale, 2020, 12(42):21605-21609.
SUN D L, ZHANG C, KAVAND M, et al. Spintronics of organometal trihalide perovskites [EB/OL]. (2016-08-02). http://arxiv.org/abs/1608.00993http://arxiv.org/abs/1608.00993.
WU K W, BERA A, MA C, et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films [J].Phys. Chem. Chem. Phys., 2014, 16(41):22476-22481.
WEHRENFENNIG C, LIU M Z, SNAITH H J, et al. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films [J].APL Mater., 2014, 2(8):081513-1-10.
KIM Y C, JEON N J, NOH J H, et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells [J].Adv. Energy Mater., 2016, 6(4):1502104-1-8.
JACOBSSON T J, CORREA-BAENA J P, ANARAKI E H, et al. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells [J].J. Am. Chem. Soc., 2016, 138(32):10331-10343.
CHEN P, BAI Y, WANG S C, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells [J].Adv. Funct. Mater., 2018, 28(17):1706923-1-10.
BI D Q, GAO P, SCOPELLITI R, et al. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3 [J].Adv. Mater., 2016, 28(15):2910-2915.
KOH T M, SHANMUGAM V, GUO X T, et al. Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics [J].J. Mater. Chem. A, 2018, 6(5):2122-2128.
CHO K T, ZHANG Y, ORLANDI S, et al. Water-repellent low-dimensional fluorous perovskite as interfacial coating for 20% efficient solar cells [J].Nano Lett., 2018, 18(9):5467-5474.
JING P T, ZHENG J J, IKEZAWA M, et al. Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots [J].J. Phys. Chem. C, 2009, 113(31):13545-13550.
ZHOU W K, CHEN S L, ZHAO Y C, et al. Constructing CsPbBr3 cluster passivated-triple cation perovskite for highly efficient and operationally stable solar cells [J].Adv. Funct. Mater., 2019, 29(14):1809180-1-11.
BIMBERG D, SONDERGELD M, GROBE E. Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs [J].Phys. Rev. B, 1971, 4(10):3451-3455.
ZHENG X H, CHEN H, YAN Z B, et al. Influence of the deposition time of barrier layers on optical and structural properties of high-efficiency green-light-emitting InGaN/GaN multiple quantum wells [J].J. Appl. Phys., 2004, 96(4):1899-1903.
HWANG J S, GOKARNA A, CHO Y H, et al. Direct comparison of optical characteristics of InGaN-based laser diode structures grown on pendeo epitaxial GaN and sapphire substrates [J].Appl. Phys. Lett., 2007, 90(13):131908-1-3.
LIU L, WANG L, LI D, et al. Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/GaN multiple quantum wells in laser diode structures [J].J. Appl. Phys., 2011, 109(7):073106-1-5.
SARAN R, HEUER-JUNGEMANN A, KANARAS A G, et al. Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals [J].Adv. Opt. Mater., 2017, 5(17):1700231.
GÖBEL A, RUF T, CARDONA M, et al. Effects of the isotopic composition on the fundamental gap of CuCl [J].Phys. Rev. B, 1998, 57(24):15183-15190.
FONDELL M, JACOBSSON T J, BOMAN M, et al. Optical quantum confinement in low dimensional hematite [J].J. Mater. Chem. A, 2014, 2(10):3352-3363.
JACOBSSON T J, EDVINSSON T. Quantum confined Stark effects in ZnO quantum dots investigated with photoelectrochemical methods [J].J. Phys. Chem. C, 2014, 118(22):12061-12072.
RUDIN S, REINECKE T L, SEGALL B. Temperature-dependent exciton linewidths in semiconductors [J].Phys. Rev. B, 1990, 42(17):11218-11231.
WANG H N, JI Z W, QU S, et al. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells [J].Opt. Express, 2012, 20(4):3932-3940.
0
浏览量
149
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构