浏览全部资源
扫码关注微信
1.中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
2.湖州学院 电子与信息系,浙江 湖州 313000
3.中国科学院大学,北京 100049
4.国科大杭州高等研究院 物理与光电工程学院,浙江 杭州 310024
5.同济大学 物理科学与工程学院,上海 200092
[ "赵文超(1983-),男,河南南乐人,博士研究生,2009年于河南大学获得硕士学位,主要从事人工电磁材料、光谱技术与应用和光电材料与器件的研究。 E-mail: wczhao@mail.sitp.ac.cn" ]
[ "戴宁(1959-),男,上海人,博士,研究员,博士研究生导师,1994年于美国Notre Dame大学获得博士学位,主要从事半导体低维结构材料及其光电、物理特性、新型红外薄膜材料与器件和新型光电材料与器件的研究。 E-mail:ndai@mail.sitp.ac.cn" ]
[ "郝加明(1980-),男,安徽安庆人,博士,教授,博士研究生导师,2008年于复旦大学获得博士学位,主要从事超构材料、等离激元光子学和红外物理与技术的研究。 E-mail: jiaming.hao@mail.sitp.ac.cn" ]
纸质出版日期:2021-09-01,
收稿日期:2021-05-08,
修回日期:2021-05-26,
扫 描 看 全 文
赵文超, 文政绩, 周子骥, 等. 基于深亚波长双层媒质的钙钛矿量子点荧光增强[J]. 发光学报, 2021,42(9):1403-1411.
Wen-chao ZHAO, Zheng-ji WEN, Zi-ji ZHOU, et al. Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Based on Deep-subwavelength Bilayer Media[J]. Chinese Journal of Luminescence, 2021,42(9):1403-1411.
赵文超, 文政绩, 周子骥, 等. 基于深亚波长双层媒质的钙钛矿量子点荧光增强[J]. 发光学报, 2021,42(9):1403-1411. DOI: 10.37188/CJL.20210180.
Wen-chao ZHAO, Zheng-ji WEN, Zi-ji ZHOU, et al. Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Based on Deep-subwavelength Bilayer Media[J]. Chinese Journal of Luminescence, 2021,42(9):1403-1411. DOI: 10.37188/CJL.20210180.
近年来,利用金属纳米结构表面等离激元共振提高半导体材料的发光效率取得了重要进展,但是相关结构体系面临着加工技术复杂、重复性差等缺点。本文报道了一种新型超薄、大面积、共振可调的平面双层纳米媒质用于增强量子点发光,其结构由深亚波长厚度、高吸收率特性的氧化铜(CuO)薄膜和金(Au)薄膜构成。实验结果显示,通过改变CuO薄膜厚度可以灵活调节CuO/Au双层堆栈结构的反射光谱,以其为基底旋涂CsPbBr
3
钙钛矿量子点后与裸石英旋涂CsPbBr
3
量子点参考样品相比实现了最大7倍的荧光发光增强。理论分析表明,荧光增强效应与强光学非对称法布里-珀罗薄膜干涉引起的高效光吸收和局域场增强导致的自发辐射速率加快相关。
In recent years
great strides have been made in improving the luminous efficiency of semiconductor materials by using surface plasmon resonance. However
there still exist some disadvantages
such as sophisticated nanofabrication techniques
poor repeatability and so on. Here
a novel ultra-thin
large-area and tunable planar bilayer media is reported
which is composed of deep-subwavelength and high absorptive CuO thin films and Au substrate. Experimental results show that reflectance spectra of CuO/Au bilayer can be sensitively tuned by changing the thickness of CuO film. Compared with the bare quartz based reference sample
photoluminescence (PL) enhancement factor of quantum dots/CuO/Au trilayer can be achieved by up to 7 times. Theoretical analysis shows that PL enhancement effect is attributed to the high efficient absorption caused by Fabry-Perot thin film interference and the accelerated spontaneous emission rate resulted from local field enhancement.
荧光增强CsPbBr3量子点深亚波长F-P干涉自发辐射速率
photoluminescence enhancementCsPbBr3 quantum dotsdeep-subwavelengthF-P interferencespontaneous emission rate
BAEK W, BOOTHARAJU M S, WALSH K M, et al. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters [J].Nat. Mater., 2021, 20(5):650-657.
LU J X, WEI Z H. The strategies for preparing blue perovskite light-emitting diodes [J].J. Semicond., 2020, 41(5):051203.
WU Y, LI X M, ZENG H B. Highly luminescent and stable halide perovskite nanocrystals [J].ACS Energy Lett., 2019, 4(3):673-681.
XIE M C, HAN C M, LIANG Q Q, et al. Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters:overcoming the limitations of cluster light-emitting diodes [J].Sci. Adv., 2019, 5(6):eaav9857-1-9.
WANG Y, LI X M, SONG J Z, et al. All-inorganic colloidal perovskite quantum dots:a new class of lasing materials with favorable characteristics [J].Adv. Mater., 2015, 27(44):7101-7108.
GUO J X, JIAN J L, WANG D Y, et al. Controlling amplified spontaneous emission of quantum dots by polymerized nanostructure interfaces [J].Opt. Lett., 2020, 45(16):4385-4388.
ZHAO X H, WANG P, LI B J. Surface plasmon enhanced energy transfer in metal-semiconductor hybrid nanostructures [J].Nanoscale, 2011, 3(8):3056-3059.
JUN Y C, PALA R, BRONGERSMA M L. Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits [J].J. Phys. Chem. C, 2010, 114(16):7269-7273.
CHO C H, ASPETTI C O, TURK M E, et al. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons [J].Nat. Mater., 2011, 10(9):669-675.
ZHAO W Q, TIAN X C R, FANG Z N, et al. Engineering single-molecule fluorescence with asymmetric nano-antennas [J].Light:Sci. Appl., 2021, 10(1):79-1-9.
SUN P, YU W W, PAN X H, et al. Fluorescence enhancement of metal-capped perovskite CH3NH3PbI3 thin films [J].Chin. Phys. Lett., 2017, 34(9):096801-1-4.
MIYAZAKI H T, KUROKAWA Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity [J].Phys. Rev. Lett., 2006, 96(9):097401-1-4.
RUSSELL K J, LIU T L, CUI S, et al. Large spontaneous emission enhancement in plasmonic nanocavities [J].Nat. Photonics, 2012, 6(7):459-462.
CHO C H, ASPETTI C O, PARK J, et al. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence [J].Nat. Photonics, 2013, 7(4):285-289.
NODA S, FUJITA M, ASANO T. Spontaneous-emission control by photonic crystals and nanocavities [J].Nat. Photonics, 2007, 1(8):449-458.
LUXMOORE I J, AHMADI E D, WASLEY N A, et al. Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities [J].Appl. Phys. Lett., 2010, 97(18):181104.
徐文, 陈旭, 宋宏伟. 稀土离子上转换发光中的局域电磁场调控[J].发光学报, 2018, 39(1):1-26.
XU W, CHEN X, SONG H W. Manipulation of local electromagnetic field in upconversion luminescence of rare earth ions [J].Chin. J. Lumin., 2018, 39(1):1-26. (in Chinese)
KATS M A, BLANCHARD R, GENEVET P, et al. Nanometre optical coatings based on strong interference effects in highly absorbing media [J].Nat. Mater., 2013, 12(1):20-24.
PAN H, WEN Z J, TANG Z H, et al. Wide gamut, angle-insensitive structural colors based on deep-subwavelength bilayer media [J].Nanophotonics, 2020, 9(10):3385-3392.
KATS M A, BYRNES S J, BLANCHARD R, et al. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings [J].Appl. Phys. Lett., 2013, 103(10):110104-1-4.
WANG Z, WANG X Y, CONG S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities [J].Nat. Commun., 2020, 11(1):302-1-9.
KATS M A, SHARMA D, LIN J, et al. Ultra-thin perfect absorber employing a tunable phase change material [J].Appl. Phys. Lett., 2012, 101(22):221101-1-5.
CHEN Y J, MANDAL J, LI W X, et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling [J].Sci. Adv., 2020, 6(17):eaaz5413-1-8.
CHEN P, LIU Y F, ZHANG Z J, et al. In situ growth of ultrasmall cesium lead bromine quantum dots in a mesoporous silica matrix and their application in flexible light-emitting diodes [J].Nanoscale, 2019, 11(35):16499-16507.
ZHAO W C, WEN Z J, XU Q Q, et al. Remarkable photoluminescence enhancement of CsPbBr3 perovskite quantum dots assisted by metallic thin films [J].Nanophotonics, 2021, 10(8):2257-2264.
FUJIWARA H. Spectroscopic Ellipsometry:Principles and Applications [M].Chichester: Wiley, 2007.
PALIK E D. Handbook of Optical Constants of Solids [M].New York: Academic Press, 1985.
MING T, CHEN H J, JIANG R B, et al. Plasmon-controlled fluorescence:beyond the intensity enhancement [J].J. Phys. Chem. Lett., 2012, 3(2):191-202.
REN Q H, ZHANG Y, LU H L, et al. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al2O3 spacer layer [J].Nanotechnology, 2016, 27(16):165705-1-10.
0
浏览量
163
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构