浏览全部资源
扫码关注微信
吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室,吉林 长春 130012
[ "宋宏伟(1967-),男,黑龙江阿城人,吉林大学电子科学与工程学院/集成光电子国家重点联合实验室教授,博士研究生导师;中科院百人计划(2000年)、国家杰出青年基金获得者(2009年)、吉林省第三批省管高级专家(2011年),领衔的“微纳信息材料与器件创新团队”入选国家重点领域创新团队(2017年),第四批国家万人计划领军人才(2018年)。现担任中国颗粒学会发光专业委员会副主任、中国物理学会发光分会委员、中国稀土学会发光专业委员会委员,Nanomaterials,Journal of Nanosciences and Reports,Scientific Report,Current Chinese Science,《发光学报》等学术期刊编委,高等学校优秀科研成果奖、 国家自然科学奖会评专家。主要从事稀土发光材料、光电子材料与器件的研究。代表性成果:首次实现了钙钛矿纳米晶中稀土离子的掺杂,获得了量子效率接近200%的量子剪裁发光材料,利用其作为荧光转换层应用于晶硅电池,使电池的光电转换效率提高3~4个百分点,相对提高20%,为Science亮点报道,并被评价为近年来最激动人心的工作之一。 迄今在Adv. Mater., Adv. Energy. Mater., Nano Letters., Light: Sci. & Appl.等国际重要学术期刊发表SCI论文360余篇,撰写英文专著2章,累计SCI他引12 000多次,H因子60,2014—2020年连续入选中国高倍引学者榜单。获国家自然科学二等奖、吉林省自然科学一等奖、吉林省科技进步一等奖、高等学校优秀科研成果自然科学二等奖等学术奖励。E-mail: songhw@jlu.edu.cn" ]
[ "徐文(1986-),男,四川眉山人,吉林大学电子科学与工程学院副教授,博士研究生导师;2014年于吉林大学获得博士学位,2015—2016年,南洋理工大学博士后,2016—2018年,东京工业大学JSPS博士后研究员。目前主要从事稀土掺杂纳米材料的发光调控及光电器件应用研究。承担国家自然科学基金和省部级项目多项,获吉林省自然科学一等奖,受邀在国际国内会议上做邀请报告20多次。以第一/通讯作者在Adv. Mater., Light: Sci. & Appl., Nano Lett., Angew. Chem., Nano Today., Adv. Funct. Mater., ACS Nano, Nano Energy等学术期刊发表SCI论文60篇,其中IF>10.0论文20余篇,总引用4 000余次;申请/授权专利8项。E-mail:wen_xu@jlu.edu.cn" ]
纸质出版日期:2021-05-01,
收稿日期:2021-04-19,
修回日期:2021-04-26,
移动端阅览
宋宏伟, 徐文. 钙钛矿发光-光电器件中的光谱调控[J]. 发光学报, 2021,42(5):575-579.
HONG-WEI SONG, WEN XU. Spectra Control of Perovskite Luminescence and Optoelectronic Devices. [J]. Chinese journal of luminescence, 2021, 42(5): 575-579.
宋宏伟, 徐文. 钙钛矿发光-光电器件中的光谱调控[J]. 发光学报, 2021,42(5):575-579. DOI: 10.37188/CJL.20210177.
HONG-WEI SONG, WEN XU. Spectra Control of Perovskite Luminescence and Optoelectronic Devices. [J]. Chinese journal of luminescence, 2021, 42(5): 575-579. DOI: 10.37188/CJL.20210177.
尽管钙钛矿材料在发光与光电器件等领域的研究发展迅速,但依然面临着如何突破极限效率、提高稳定性以及拓展新的应用空间等关键问题。近年来,本文作者围绕如何拓展钙钛矿材料与器件的光谱响应范围这一主题,在稀土掺杂、有机异质结杂化等方面进行了独特的探索,并取得了一些标识性的成果。作者近期接受了Light人物专访,本文是在此基础上整理出来的,希望与大家分享一些经验与见解。
Although the research of perovskite materials in the fields of luminescence and optoelectronic devices has developed rapidly
there are still some key issues
such as how to break through the limit efficiency
improve stability and expand new applications. In recent years
the author of this article has made unique explorations in rare-earth doping and hybridization of organic heterojunctions around the theme of how to expand the spectral response range of perovskite materials and devices
and has achieved some iconic results. The author recently accepted a special interview with
Light
:
Science & Applications.
This article is sorted out on this basis
hoping to share some experience and opinions with you.
钙钛矿稀土离子光谱调控太阳能电池光电二极管光电探测器
perovskiterare earth ionsspectra controlsolar cellphotodiodephotodetector
AL-ASHOURI A, KÖHNEN E, LI B, et al.. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J].Science, 2020, 370(6522):1300-1309.
JEONG M, CHOI I W, GO E M, et al.. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss[J].Science, 2020, 369(6511):1615-1620.
WANG R, MUJAHID M, DUAN Y, et al.. A review of perovskites solar cell stability[J].Adv. Funct. Mater., 2019, 29(47):1808843-1-25.
LI H, CHEN C, JIN J J, et al.. Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells[J].Nano Energy, 2018, 50:699-709.
CHEN C, LI H, JIN J J, et al.. Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells[J].Adv. Energy Mater., 2017, 7(20):1700758-1-11.
CHEN C, LIU D L, ZHANG B X, et al.. Carrier interfacial engineering by bismuth modification for efficient and thermoresistant perovskite solar cells[J].Adv. Energy Mater., 2018, 8(20):1703659-1-11.
CHEN C, WU Y J, LIU L, et al.. Interfacial engineering and photon downshifting of CsPbBr3 nanocrystals for efficient, stable, and colorful vapor phase perovskite solar cells[J].Adv. Sci., 2019, 6(11):1802046-1-9.
SONG Z L, XU W, WU Y J, et al.. Incorporating of lanthanides ions into perovskite film for efficient and stable perovskite solar cells[J].Small, 2020, 16(40):2001770.
CHEN C, LIU D L, WU Y J, et al.. Dual interfacial modifications by conjugated small-molecules and lanthanides doping for full functional perovskite solar cells[J].Nano Energy, 2018, 53:849-862.
CHEN X, XU W, DING N, et al.. Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells[J].Adv. Funct. Mater., 2020, 30(30):2003295.
WU Y J, GAO Y B, ZHUANG X M, et al.. Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction[J].Nano Energy, 2020, 77:105181.
KRASUTSKY N J, CASE W E, CHIVIAN J S. Performance characteristics of a Pr-based infrared quantum-counter imaging system[J].J. Appl. Phys., 1979, 50(5):3142-3145.
XU S, XU W, ZHU Y S, et al.. A strategy for calibrating the actual quantum efficiency of quantum cutting in YVO4∶Bi3+(Nd3+),Yb3+[J].J. Appl. Phys., 2013, 113(7):073101.
XU S, XU W, DONG B, et al.. Downconversion from visible to near infrared through multi-wavelength excitation in Er3+/Yb3+ co-doped NaYF4 nanocrystals[J].J. Appl. Phys., 2011, 110(11):113113.
ZHOU D L, LIU D L, PAN G C, et al.. Cerium and ytterbium codoped halide perovskite quantum dots:a novel and efficient downconverter for improving the performance of silicon solar cells[J].Adv. Mater., 2017, 29(42):1704149-1-6.
ZHOU D L, SUN R, XU W, et al.. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications[J].Nano Lett., 2019, 19(10):6904-6913.
DING N, XU W, ZHOU D L, et al.. Extremely efficient quantum-cutting Cr3+,Ce3+,Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70%[J].Nano Energy, 2020, 78:105278.
SUN R, LU P, ZHOU D L, et al.. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes[J].ACS Energy Lett., 2020, 5(7):2131-2139.
JI Y N, XU W, DING N, et al.. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection[J].Light: Sci. Appl., 2020, 9(1):184.
JI Y N, XU W, LI D Y, et al.. Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection[J].Nano Energy, 2019, 61:211-220.
DING N, XU W, ZHOU D L, et al.. Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals[J].Nano Energy, 2020, 76:105103.
0
浏览量
387
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构