浏览全部资源
扫码关注微信
厦门大学 材料学院,福建 厦门 361005
[ "郑鹏(1991-),男,安徽亳州人,博士研究生,2014年于北京科技大学获得硕士学位,主要从事激光照明与显示用荧光材料的研究。E-mail: zheng_peng@foxmail.com" ]
[ "解荣军(1969-),男,江苏镇江人,博士,教授,1998年于中国科学院上海硅酸盐研究所获得博士学位,主要从事稀土发光材料、量子点和发光器件的研究。E-mail: rjxie@xmu.edu.cn" ]
纸质出版日期:2021-10-01,
收稿日期:2021-05-03,
修回日期:2021-05-15,
扫 描 看 全 文
郑鹏, 丁国真, 解荣军. Ce3+和Eu2+掺杂荧光材料的光猝灭机理研究进展[J]. 发光学报, 2021,42(10):1447-1457.
Peng ZHENG, Guo-zhen DING, Rong-jun XIE. Research Progress on Optical Quenching of Ce3+- and Eu2+-doped Luminescent Materials[J]. Chinese Journal of Luminescence, 2021,42(10):1447-1457.
郑鹏, 丁国真, 解荣军. Ce3+和Eu2+掺杂荧光材料的光猝灭机理研究进展[J]. 发光学报, 2021,42(10):1447-1457. DOI: 10.37188/CJL.20210173.
Peng ZHENG, Guo-zhen DING, Rong-jun XIE. Research Progress on Optical Quenching of Ce3+- and Eu2+-doped Luminescent Materials[J]. Chinese Journal of Luminescence, 2021,42(10):1447-1457. DOI: 10.37188/CJL.20210173.
Ce
3+
和Eu
2+
掺杂荧光材料具有吸收率高、发射宽、荧光寿命短、光谱可调等优点,是激光照明与显示应用的理想荧光材料。然而,Ce
3+
和Eu
2+
掺杂荧光材料在激光激发下的发光猝灭严重限制了激光荧光光源的光效和光亮度。传统观点认为发光猝灭主要由热猝灭效应引起,然而近些年的研究结果显示,即使热猝灭效应被有效控制,高强度的激发光本身也会导致荧光材料发射效率显著下降,这种非热效应的发光猝灭可以被简称为光猝灭。本文简要概述了目前已知的四种光猝灭效应,即基态耗尽、激发态吸收、能量传递上转换和光释光效应的研究进展,并对光猝灭的未来研究方向进行了展望。
Ce
3+
- and Eu
2+
-doped luminescent materials featuring high absorbance
broad emission band
short decay time
and tunable emission spectra
are ideal candidates for laser lighting and display applications. However
luminescence quenching of Ce
3+
- and Eu
2+
-doped luminescent materials under laser excitation severely restricts the luminous efficacy and luminance of laser-driven lighting devices. As a rule of thumb
the luminescence quenching is attributed to thermal quenching. However
recent studies have found that even if the thermal quenching is controlled
the high-intensity excitation light itself can lead to a significant decrease in the luminous efficiency of luminescent materials. This non-thermal luminescence quenching effect can be referred to as optical quenching. This article briefly reviews the latest research progress of four known optical quenching effects
namely
ground-state depletion
excited-state absorption
energy-transfer upconversion
and optically stimulated luminescence
and the prospects of studies on optical quenching are outlined.
激光照明与显示荧光材料光猝灭光饱和
laser lighting and displayluminescent materialsoptical quenchingoptical saturation
NADEAU V J, ELSON D S, HANNA G B, et al. Modelling of a laser-pumped light source for endoscopic surgery[C].Proceedings of SPIE 7103, Illumination Optics, Glasgow, 2008: 71030J-1-9.
HARTWIG U. Fiber optic illumination by laser activated remote phosphor[C].Proceedings of SPIE 8485, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration Ⅸ, San Diego, 2012: 84850N-1-8.
HARTWIG U, BRUEMMER M. Challenges for reducing the size of laser activated remote phosphor light engines for DLP projection[C].Proceedings of SPIE 9293, International Optical Design Conference, Kohala Coast, 2014: 929313-1-6.
HOELEN C G A, BENOY D A, CORNELISSEN H J, et al. High brightness light sources based on LD-pumped luminescent converters and LED-pumped luminescent concentrators[C].Proceedings of SPIE 10940, Light-Emitting Devices, Materials, and Applications, San Francisco, 2019: 1094015-1-12.
JRWIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J].Laser Photonics Rev., 2013, 7(6): 963-993.
LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J].Laser Photonics Rev., 2018, 12(12): 1800173-1-29.
BHARDWAJ J, CESARATTO J M, WILDESON I H, et al. Progress in high-luminance LED technology for solid-state lighting[J].Phys. Status Solidi (A), 2017, 214(8): 1600826-1-9.
HAGEMANN V, SEIDL A, WEIDMANN G. Ceramic phosphor wheels for high luminance SSL-light sources with >500 W of laser power for digital projection[C].Proceedings of SPIE 10940, Light-Emitting Devices, Materials, and Applications, San Francisco, 2019: 1094017-1-16.
YANG Y, ZHUANG S L, KAI B. High brightness laser-driven white emitter for Etendue-limited applications[J].Appl. Opt., 2017, 56(30): 8321-8325.
金伟其, 王霞, 廖宁放, 等. 辐射度光度与色度及其测量[M]. 第2版. 北京: 北京理工大学出版社, 2016.
JIN W Q, WANG X, LIAO N F, et al. Photometry, Radiometry, Colorimetry & Measurement[M].2nd ed. Beijing: Beijing Institute of Technology Press, 2016. (in Chinese)
ZHENG P, LI S X, WANG L, et al. Unique color converter architecture enabling phosphor-in-glass(PiG) films suitable for high-power and high-luminance laser-driven white lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(17): 14930-14940.
WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG∶Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J].J. Mater. Chem. C, 2019, 7(13): 3901-3908.
YOU S H, LI S X, ZHENG P, et al. A thermally robust La3Si6N11∶Ce-in-glass film for high-brightness blue-laser-driven solid state lighting[J].Laser Photonics Rev., 2019, 13(2): 1800216-1-10.
ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photonics Rev., 2019, 13(10): 1900147-1-10.
SONG Y H, JI E K, JEONG B W, et al. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting[J].Sci. Rep., 2016, 6: 31206-1-7.
SONG Y H, JI E K, JEONG B W, et al. Design of laser-driven high-efficiency Al2O3/YAG∶Ce3+ ceramic converter for automotive lighting: fabrication, luminous emittance, and tunable color space[J].Dyes Pigm., 2017, 139: 688-692.
SONG Y H, KWON S B, JUNG M K, et al. Fabrication design for a high-quality laser diode-based ceramic converter for a laser headlamp application[J].Ceram. Int., 2018, 44(1): 1182-1186.
XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation[J].J. Mater. Chem. C, 2019, 7(37): 11449-11456.
SHCHEKIN O B, SCHMIDT P J, JIN F H, et al. Excitation dependent quenching of luminescence in LED phosphors[J].Phys. Status Solidi (RRL), 2016, 10(4): 310-314.
KRASNOSHCHOKA A, THORSETH A, DAM-HANSEN C, et al. Investigation of saturation effects in ceramic phosphors for laser lighting[J].Materials (Basel), 2017, 10(12): 1407-1-9.
XU J, THORSETH A, XU C, et al. Investigation of laser-induced luminescence saturation in a single-crystal YAG∶Ce phosphor: towards unique architecture, high saturation threshold, and high-brightness laser-driven white lighting[J].J. Lumin., 2019, 212: 279-285.
KANG J, ZHANG L, LI Y B, et al. Luminescence declining behaviors in YAG∶Ce transparent ceramics for high power laser lighting[J].J. Mater. Chem. C, 2019, 7(45): 14357-14365.
XU J, YANG Y, GUO Z Q, et al. Comparative study of Al2O3-YAG∶Ce composite ceramic and single crystal YAG∶Ce phosphors for high-power laser lighting[J].Ceram. Int., 2020, 46(11): 17923-17928.
WIEG A T, PENILLA E H, HARDIN C L, et al. Broadband white light emission from Ce∶AlN ceramics: high thermal conductivity down-converters for LED and laser-driven solid state lighting[J].APL Mater., 2016, 4(12): 126105-1-8.
YOU S H, LI S X, WANG L, et al. Ternary solid solution phosphors Ca1-x-yLixAl10-x-ySi1+x+yN3-yOy∶Ce3+ with enhanced thermal stability for high-power laser lighting[J].Chem. Eng. J., 2021, 404: 126575-1-11.
LI S X, ZHU Q Q, TANG D M, et al. Al2O3-YAG∶Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting[J].J. Mater. Chem. C, 2016, 4(37): 8648-8654.
LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3∶Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting[J].J. Mater. Chem. C, 2016, 4(35): 8197-8205.
KANG T W, PARK K W, RYU J H, et al. Strong thermal stability of Lu3Al5O12∶Ce3+ single crystal phosphor for laser lighting[J].J. Lumin., 2017, 191: 35-39.
PARK J, KIM J, KWON H. Phosphor-aluminum composite for energy recycling with high-power white lighting[J].Adv. Opt. Mater., 2017, 5(19): 1700347-1-6.
LENEF A, KELSO J, ZHENG Y, et al. Radiance limits of ceramic phosphors under high excitation fluxes[C].Proceedings of SPIE 8841, Current Developments in Lens Design and Optical Engineering ⅩⅣ, San Diego, 2013: 884107-1-20.
LENEF A, RAUKAS M, WANG J, et al. Phosphor performance under high intensity excitation by InGaN laser diodes[J].ECS J. Solid State Sci. Technol., 2020, 9(1): 016019-1-16.
JANSEN T, BÖHNISCH D, JÜSTEL T. On the photoluminescence linearity of Eu2+ based LED phosphors upon high excitation density[J].ECS J. Solid State Sci. Technol., 2016, 5(6): R91-R97.
VAN DER HEGGEN D, JOOS J J, SMET P F. Importance of evaluating the intensity dependency of the quantum efficiency: impact on LEDs and persistent phosphors[J].ACS Photonics, 2018, 5(11): 4529-4537.
BICANIC K T, LI X Y, SABATINI R P, et al. Design of phosphor white light systems for high-power applications[J].ACS Photonics, 2016, 3(12): 2243-2248.
SIJBOM H F, JOOS J J, MARTIN L I D J, et al. Luminescent behavior of the K2SiF6∶Mn4+ red phosphor at high fluxes and at the microscopic level[J].ECS J. Solid State Sci. Technol., 2015, 5(1): R3040-R3048.
NITTA M, NAGAO N, NOMURA Y, et al. High-brightness red-emitting phosphor La3(Si, Al)6(O, N)11∶Ce3+ for next-generation solid-state light sources[J].ACS Appl. Mater. Interfaces, 2020, 12(28): 31652-31658.
ZHENG P, LI S X, TAKEDA T, et al. Unraveling the luminescence quenching of phosphors under high-power-density excitation[J].Acta Mater., 2021, 209: 116813.
BRIL A. On the saturation of fluorescence with cathode-ray excitation[J].Physica, 1949, 15(3-4): 361-379.
DE LEEUW D M, HOOFT G W T. Method for the analysis of saturation effects of cathodoluminescence in phosphors; applied to Zn2SiO4∶Mn and Y3Al5O12∶Tb[J].J. Lumin., 1983, 28(3): 275-300.
JACOBS R R, KRUPKE W F, WEBER M J. Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers[J].Appl. Phys. Lett., 1978, 33(5): 410-412.
MINISCALCO W J, PELLEGRINO J M, YEN W M. Measurements of excited-state absorption in Ce3+∶YAG[J].J. Appl. Phys., 1978, 49(12): 6109-6111.
OWEN J F, DORAIN P B, KOBAYASI T. Excited-state absorption in Eu+2∶CaF2 and Ce+3∶YAG single crystals at 298 and 77 K[J].J. Appl. Phys., 1981, 52(3): 1216-1223.
HAMILTON D S, GAYEN S K, POGATSHNIK G J, et al. Optical-absorption and photoionization measurements from the excited states of Ce3+∶Y3Al5O12[J].Phys. Rev. B, 1989, 39(13): 8807-8815.
LAWSON J K, PAYNE S A. Excited-state absorption of Eu2+-doped materials[J].Phys. Rev. B, 1993, 47(21): 14003-14010.
AUZEL F. Upconversion and anti-Stokes processes with f and d ions in solids[J].Chem. Rev., 2004, 104(1): 139-174.
VAN DER HEGGEN D, JOOS J J, BURBANO D C R, et al. Counting the photons: determining the absolute storage capacity of persistent phosphors[J].Materials (Basel), 2017, 10(8): 867-1-13.
STRUCK C W, FONGER W H. Unified model of the temperature quenching of narrow-line and broad-band emissions[J].J. Lumin., 1975, 10(1): 1-30.
BLEIJENBERG K C, BLASSE G. QMSCC calculations on thermal quenching of model phosphor systems[J].J. Solid State Chem., 1979, 28(3): 303-307.
DORENBOS P. Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds[J].J. Phys.: Condens. Matter., 2005, 17(50): 8103-8111.
UEDA J, DORENBOS P, BOS A J J, et al. Insight into the thermal quenching mechanism for Y3Al5O12∶Ce3+ through thermoluminescence excitation spectroscopy[J].J. Phys. Chem. C, 2015, 119(44): 25003-25008.
BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG∶Ce[J].Chem. Mater., 2009, 21(10): 2077-2084.
0
浏览量
676
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构