浏览全部资源
扫码关注微信
1.东华大学 材料科学与工程学院,上海 201620
2.先进玻璃制造技术教育部工程研究中心,上海 201620
3.东华大学 功能材料研究中心,上海 201620
[ "王连军(1974-),男,辽宁大连人,博士,教授,2002年于大连理工大学获得博士学位,主要从事光功能玻璃陶瓷材料的研究。E-mail: wanglj@dhu.edu.cn" ]
纸质出版日期:2021-10-01,
收稿日期:2021-04-30,
修回日期:2021-05-13,
扫 描 看 全 文
王连军, 刘喆, 耿镕镕, 等. 新型钙钛矿纳米晶复合玻璃制备方法研究进展[J]. 发光学报, 2021,42(10):1569-1584.
Lian-jun WANG, Zhe LIU, Rong-rong GENG, et al. Research Progress on Preparation Methods of Perovskite Nanocrystals Embedded Glass[J]. Chinese Journal of Luminescence, 2021,42(10):1569-1584.
王连军, 刘喆, 耿镕镕, 等. 新型钙钛矿纳米晶复合玻璃制备方法研究进展[J]. 发光学报, 2021,42(10):1569-1584. DOI: 10.37188/CJL.20210164.
Lian-jun WANG, Zhe LIU, Rong-rong GENG, et al. Research Progress on Preparation Methods of Perovskite Nanocrystals Embedded Glass[J]. Chinese Journal of Luminescence, 2021,42(10):1569-1584. DOI: 10.37188/CJL.20210164.
全无机钙钛矿纳米晶具有发光效率高、发光波段可调等优点,是光电领域的研究热点之一,但是稳定性差一直阻碍着其实际应用。钙钛矿纳米晶玻璃既保留了纳米晶优异的发光性能,又具有优异的物化稳定性,备受研究者们的关注。本文概述了钙钛矿纳米晶复合玻璃制备方法的国内外研究进展,并进一步阐述了复合玻璃的应用领域,最后对其存在的问题及未来的发展方向进行了总结和展望。
Owing to the high luminous efficiency and tunable emission spectra
all-inorganic perovskite nanocrystal is one of the research hotspots in the field of optoelectronics. However
the poor stability has always hindered their practical applications. Embedding the perovskite nanocrystals into the glass matrix can not only effectively improve the physical and chemical stability
but also retain the original luminescence properties
which has drawn much attention from researchers. The research progress of perovskite nanocrystals embedded glass will be reviewed in this paper
and the preparation methods and application fields are described. Finally
we will summarize the problems and prospect the future development of perovskite nanocrystals embedded glasses.
全无机钙钛矿纳米晶发光玻璃制备方法
all-inorganic perovskitenanocrystallineluminescent glasspreparation methods
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites(CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Lett., 2015, 15(6): 3692-3696.
KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J].Science, 2017, 358(6364): 745-750.
AKKERMAN Q A, RAINÒG , KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J].Nat. Mater., 2018, 17(5): 394-405.
CHEN J X, JIA D L, JOHANSSON E M J, et al. Emerging perovskite quantum dot solar cells: feasible approaches to boost performance[J].Energ. Environ. Sci., 2021, 14(1): 224-261.
WANG X C, BAO Z, CHANG YC, et al. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes[J].ACS Energy Lett., 2020, 5(11): 3374-3396.
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J].Chem. Soc. Rev., 2019, 48(1): 310-350.
MALGRAS V, HENZIE J, TAKEI T, et al. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films[J].Angew. Chem. Int. Ed., 2018, 57(29): 8881-8885.
ZHANG Q G, WANG B, ZHENG W L, et al. Ceramic-like stable CsPbBr3nanocrystals encapsulated in silica derived from molecular sieve templates[J].Nat. Commun., 2020, 11: 31.
ZHANG C Y, LI W B, LI L. Metal halide perovskite nanocrystals in metal-organic framework host: not merely enhanced stability[J].Angew. Chem. Int. Ed., 2021, 60(14): 7488-7501.
LUO P L, HUANG P, WANG J C, et al. Controllable synthesis of glass ceramics containing YF3∶Eu3+nanocrystals: well-preserved Eu and prolonged lifetime[J].J. Am. Ceram. Soc., 2020, 103(5): 3089-3096.
ZHANG H, DASBISWAS K, LUDWIG N B, et al. Stable colloids in molten inorganic salts[J].Nature, 2017, 542(7641): 328-331.
HE M L, CHENG Y Z, SHEN L L, et al. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs[J].Appl. Surf. Sci., 2018, 448: 400-406.
LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx Inorganic nanocomposites with exceptional stability in water, light, and heat[J].Angew. Chem. Int. Ed., 2017, 56(36): 10696-10701.
SU M, FAN B, LI H Y, et al. Hydroxyl terminated mesoporous silica-assisted dispersion of ligand-free CsPbBr3/Cs4PbBr6 nanocrystals in polymer for stable white LED[J].Nanoscale, 2019, 11(3): 1335-1342.
DIRIN D N, BENIN B M, YAKUNIN S, et al. Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals[J].ACS Nano, 2019, 13(10): 11642-11652.
AI B, LIU C, WANG J, et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses[J].J. Am. Ceram. Soc., 2016, 99(9): 2875-2877.
HAN K, IM W B, HEO J, et al. A complete inorganic colour converter based on quantum-dot-embedded silicate glasses for white light-emitting-diodes[J].Chem. Commun., 2016, 52(17): 3564-3567.
YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J].ACS Appl. Mater. Interfaces, 2018, 10(22): 18918-18926.
WEI Y L, EBENDORFF-HEIDEPRIEM H, ZHAO J. Recent advances in hybrid optical materials: integrating nanoparticles within a glass matrix[J].Adv. Opt. Mater., 2019, 7(21): 1900702-1-34.
LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J].Prog. Mater. Sci., 2018, 97: 38-96.
DI X X, HU Z M, JIANG J T, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J].Chem. Commun., 2017, 53(80): 11068-11071.
LI P Z, HU C B, ZHOU L, et al. Novel synthesis and optical characterization of CsPb2Br5 quantum dots in borosilicate glasses[J].Mater. Lett., 2017, 209: 483-485.
SHAO G Z, LIU S N, DING L, et al. KxCs1-xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes[J].Chem. Eng. J., 2019, 375: 122031-1-8.
YUAN R R, SHEN L L, SHEN C Y, et al. CsPbBr3∶xEu3+perovskite QD borosilicate glass: a new member of the luminescent material family[J].Chem. Commun., 2018, 54(27): 3395-3398.
LIU S J, LUO Y K, HE M L, et al. Novel CsPbI3 QDs glass with chemical stability and optical properties[J].J. Eur. Ceram. Soc., 2018, 38(4): 1998-2004.
LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J].Adv.Funct.Mater., 2016, 26(15): 2435-2445.
JIANG J T, SHAO G Z, ZHANG Z L, et al. Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P-Si-Zn glass for white LEDs[J].Chem. Commun., 2018, 54(87): 12302-12305.
LIU S J, HE M L, DI X X, et al. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X=Br, I) QDs in borosilicate glass[J].Ceram. Int., 2018, 44(4): 4496-4499.
YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications[J].Adv. Opt. Mater., 2019, 7(9): 1801663-1-11.
POLAVARAPU L, NICKEL B, FELDMANN J, et al. Advances in quantum-confined perovskite nanocrystals for optoelectronics[J].Adv. Energy Mater., 2017, 7(16): 1700267-1-9.
SOETAN N, PURETZKY A, REID K, et al. Ultrafast spectral dynamics of CsPb(BrxCl1-x)3 mixed-halide nanocrystals[J].ACS Photonics, 2018, 5(9): 3575-3583.
CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3(X=Cl, Br, I) perovskite quantum dots through fluorine doping[J].Nanoscale, 2019, 11(37): 17216-17221.
CHEN D Q, YUAN S, CHEN X, et al. CsPbX3(X=Br, I) perovskite quantum dot embedded low-melting phosphosilicate glasses: controllable crystallization, thermal stability and tunable emissions[J].J. Mater. Chem. C, 2018, 6(25): 6832-6839.
LI P P, XIE W Q, MAO W, et al. A new whole family perovskites quantum dots (CsPbX3, X=Cl, Br, I) phosphate glasses with full spectral emissions[J].J. Alloys Compd., 2020, 817: 153338-1-6.
XIA M L, LUO J J, CHEN C, et al. Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications[J].Adv. Opt. Mater., 2019, 7(2): 1900851.
SHEN C Y, ZHAO Y, YUAN L, et al. Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield[J].Chem. Eng. J., 2020, 382: 122868-1-7.
YANG B B, ZHENG F, MEI S L, et al. Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application[J].Appl. Surf. Sci., 2020, 512: 145655-1-9.
CAO E H, QIU J B, ZHOU D C, et al. The synthesis of a perovskite CsPbBr3 quantum dot superlattice in borosilicate glass[J].Chem. Commun., 2020, 56(32): 4460-4463.
ZHOU S F, GUO Q B, INOUE H, et al. Topological engineering of glass for modulating chemical state of dopants[J].Adv. Mater., 2014, 26(47): 7966-7972.
XU Z S, LIU X F, JIANG C, et al. Effect of topological structure on photoluminescence of PbSe quantum dot-doped borosilicate glasses[J].J. Am. Ceram. Soc., 2018, 101(4): 1508-1515.
HUANG X J, GUO Q Y, YANG D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J].Nat. Photonics, 2020, 14(2): 82-88.
TAN D Z, SUN X Y, WANG Q, et al. Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing[J].Opt. Lett., 2020, 45(14): 3941-3944.
HAN B N, CAI B, SHAN Q S, et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering[J].Adv. Funct. Mater., 2018, 28(47): 1804285-1-8.
SUN K, TAN D Z, SONG J, et al. Highly emissive deep-red perovskite quantum dots in glass: photoinduced thermal engineering and applications[J].Adv. Opt. Mater., 2021, 9(11): 2100094.
TAN D Z, SHARAFUDEEN K N, YUE Y Z, et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications[J].Prog. Mater. Sci., 2016, 76: 154-228.
XIANG X Q, LIN H, LI R F, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: unexpected mechanoluminescence and applications[J].Nano Res., 2019, 12(5): 1049-1054.
JIANG Z H, ZHANG Q Y. The structure of glass: a phase equilibrium diagram approach[J].Prog. Mater. Sci., 2014, 61: 144-215.
ZHAO J J, MA R H, CHEN X K, et al. From phase separation to nanocrystallization in fluorosilicate glasses: structural design of highly luminescent glass-ceramics[J].J. Phys. Chem. C, 2016, 120(31): 17726-17732.
LI P P, XIE W Q, MAO W, et al. Luminescence enhancement of CsPbBr3 quantum dot glasses induced by two unexpected methods: mechanical and hydration crystallization[J].J. Mater. Chem. C, 2020, 8(2): 473-480.
WANG Y J, ZHANG R L, YUE Y, et al. Room temperature synthesis of CsPbX3(X=Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass[J].J. Alloy Compd., 2020, 818: 152872-1-6.
XIANG X Q, LIN H, XU J, et al. CsPb(Br, I)3 embedded glass: fabrication, tunable luminescence, improved stability and wide-color gamut LCD application[J].Chem. Eng. J., 2019, 378: 122255-1-7.
YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display[J].Chem. Eng. J., 2020, 398: 125616-1-7.
ZHANG Z L, SHEN L L, ZHAO Y, et al. Coexisting CsPbCl3∶CsPbI3 perovskite nanocrystal glasses with high luminescence and stability[J].Chem. Eng. J., 2020, 385: 123415-1-8.
LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs[J].Nanoscale, 2020, 12(12): 6630-6636.
DING L, LIU S N, ZHANG Z L, et al. Stable Zn-doped CsPbBr3 NCs glasses toward an enhanced optical performance for WLED[J].Ceram. Int., 2019, 45(17): 22699-22706.
LIU J M, LIU S N, CHEN Y, et al. Sm3+-doped CsPbBr3 NCs glass: a luminescent material for potential use in lighting engineering[J].Ceram. Int., 2019, 45(17): 22688-22693.
CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs[J].ACS Appl. Mater. Interfaces, 2018, 10(25): 21434-21444.
LIN J D, LU Y X, LI X Y, et al. Perovskite quantum dots glasses based backlit displays[J].ACS Energy Lett., 2021, 6(2): 519-528.
HE M L, CHENG Y Z, SHEN L L, et al. Doping manganese into CsPb(Cl/Br)3 quantum dots glasses: dual-color emission and super thermal stability[J].J. Am. Ceram. Soc., 2019, 102(3): 1090-1100.
ZHENG F, YANG B B, CAO P Y, et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability[J].J. Alloys Compd., 2020, 818: 153307-1-9.
LIU J M, SHEN L L, CHEN Y, et al. Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering[J].J. Mater. Chem. C, 2019, 7(43): 13606-13612.
ZHANG H L, JIN M F F, LIU X D, et al. The preparation and up-conversion properties of full spectrum CsPbX3(X=Cl, Br, I) quantum dot glasses[J].Nanoscale, 2019, 11(39): 18009-18014.
ZHANG L Q, LIN H, WANG C Y, et al. A solid-state colorimetric fluorescence Pb2+-sensing scheme: mechanically-driven CsPbBr3 nano crystallization in glass[J].Nanoscale, 2020, 12(16): 8801-8808.
LIN J D, YANG C B, HUANG P, et al. Photoluminescence tuning from glass-stabilized CsPbX3(X=Cl, Br, I) perovskite nanocrystals triggered by upconverting Tm∶KYb2F7 nanoparticles for high-level anti-counterfeiting[J].Chem. Eng. J., 2020, 395: 125214-1-8.
HE M T, JIA J N, ZHAO J J, et al. Glass-ceramic phosphors for solid state lighting: a review[J].Ceram. Int., 2021, 47(3): 2963-2980.
ZHAO Y Y, SUN S, CAI X F, et al. Enhancement in sintering driving force derived from in situ ordered structural collapse of mesoporous powders[J].J. Am. Ceram. Soc., 2020, 103(10): 5654-5663.
ZHANG X, YU X W, ZHOU B Y, et al. Sinterability enhancement by collapse of mesoporous structure of SBA-15 in fabrication of highly transparent silica glass[J].J. Am. Ceram. Soc., 2015, 98(4): 1056-1059.
ZHANG X, LUO W, WANG L J, et al. Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles[J].J. Mater. Chem. C, 2014, 2(34): 6966-6970.
ZHANG X, GU S J, ZHOU B Y, et al. Solid-state sintering of glasses with optical nonlinearity from mesoporous powders[J].J. Am. Ceram. Soc., 2016, 99(5): 1579-1586.
LIU C, QIAN B, NI R P, et al. 3D printing of multicolor luminescent glass[J].RSC Adv., 2018, 8(55): 31564-31567.
0
浏览量
407
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构