浏览全部资源
扫码关注微信
东南大学生物科学与医学工程学院 生物电子学国家重点实验, 江苏 南京 210096
[ "刘威(1993-),男,湖北孝感人,博士研究生,2017年于武汉科技大学获得硕士学位,主要从事氧化锌微腔电致发光器件设计与制备的研究。E-mail: liu12345wei@sina.com" ]
[ "石增良(1979-),男,山东临沂人,博士,讲师,2008年于吉林大学获得博士学位,主要从事纳米光电功能材料与器件与生物传感技术的研究。E-mail: zlshi@seu.edu.cn" ]
纸质出版日期:2021-06-01,
收稿日期:2021-04-18,
修回日期:2021-04-26,
扫 描 看 全 文
刘威, 李竹新, 王俊洁, 等. Er3+掺杂对ZnO/GaN发光二极管电致发光性能的调控[J]. 发光学报, 2021,42(6):863-870.
Wei LIU, Zhu-xin LI, Jun-jie WANG, et al. Regulation of Electroluminescent Properties of ZnO/GaN Light Emitting Diodes by Er3+ Doping[J]. Chinese Journal of Luminescence, 2021,42(6):863-870.
刘威, 李竹新, 王俊洁, 等. Er3+掺杂对ZnO/GaN发光二极管电致发光性能的调控[J]. 发光学报, 2021,42(6):863-870. DOI: 10.37188/CJL.20210125.
Wei LIU, Zhu-xin LI, Jun-jie WANG, et al. Regulation of Electroluminescent Properties of ZnO/GaN Light Emitting Diodes by Er3+ Doping[J]. Chinese Journal of Luminescence, 2021,42(6):863-870. DOI: 10.37188/CJL.20210125.
采用水热法制备了Er
3+
掺杂的ZnO纳米棒阵列,通过场发射扫描电镜、X单晶衍射谱仪、透射电镜、微区显微光谱仪等对其形貌结构和发光性能进行了表征。结果表明,掺杂前后ZnO纳米棒的形貌及晶型结构未发生改变,Er
3+
被均匀地掺杂至ZnO纳米棒中,并未发现形成Er
2
O
3
;掺杂Er
3+
后样品的光致发光光谱显示400 nm左右蓝光部分占比先提高后减少,其可见光占比减少归因于Er
3+
填补了一部分锌空位缺陷,同时抑制了一部分氧空位缺陷。结合荧光寿命光谱分析也可发现其辐射发光部分寿命延长,表明荧光辐射效率提高。最终选取掺杂浓度为30%的单根ZnO纳米棒制备ZnO/GaN异质结发光二极管,与未掺杂Er
3+
的样品相比,其电致发光强度提高了5倍。本研究可为ZnO基电致发光器件的性能改善提供一种简便可行的方法。
Er
3+
doped ZnO nanorod arrays were prepared by hydrothermal method
the morphology and luminescence properties were characterized by field emission scanning electron microscopy
X-ray single crystal diffraction
transmission electron microscopy and micro spectrometer. The experimental results show that Er
3+
is successfully and uniformly doped into ZnO nanorods
and the formation of Er
2
O
3
is not found. After Er
3+
doped
the photoluminescence spectrum shows a broad band peaked at 400 nm. With the increasing of Er
3+
concentration
the proportion of the blue part decreases
which indicates that Er
3+
fills part of the Zn vacancy defects and suppresses part of the O vacancy defects. At the same time
combined with the fluorescence lifetime spectrum
it can also be found that the lifetime of the radiative part is prolonged
which indicates that the fluorescence radiation efficiency is improved. Finally
ZnO nanorod contented Er
3+
with a mass concentration of 30% was selected to fabricate ZnO/GaN light-emitting diodes. Compared with the samples without Er
3+
the electroluminescence intensity of ZnO/GaN light-emitting diodes increased by five times. This paper provides a simple and feasible method to improve the performance of ZnO based electroluminescent devices.
ZnO纳米棒阵列Er3+掺杂缺陷调控电致发光器件
ZnO nanorod arrayEr3+ dopingdefect controlelectroluminescence device
JACOBS I E, MOULÉ A J. Controlling molecular doping in organic semiconductors [J].Adv. Mater., 2017, 29(42):1703063.
CHEN W, QI D C, GAO X Y, et al. Surface transfer doping of semiconductors [J].Prog. Surf. Sci., 2009, 84(9-10):279-321.
NORRIS D J, EFROS A L, ERWIN S C. Doped nanocrystals [J].Science, 2008, 319(5871):1776-1779.
WANG H, HO H P, XU J B. Photoelectron spectroscopic investigation of nitrogen chemical states in ZnO∶(N, Ga) thin films [J].J. Appl. Phys., 2008, 103(10):103704-1-6.
ALGARNI H, EL-GOMATI M M, AL-ASSIRI M S. Effect of gallium concentrations on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures [J].J. Nanosci. Nanotechnol., 2014, 14(7):5317-5323.
SITTHICHAI S, PHURUANGRAT A, THONGTEM T, et al. Influence of Mg dopant on photocatalytic properties of Mg-doped ZnO nanoparticles prepared by sol-gel method [J].J. Ceram. Soc. Jpn., 2017, 125(3):122-124.
SA-NGUANPRANG S, PHURUANGRAT A, THONGTEM T, et al. Synthesis, analysis, and photocatalysis of Mg-doped ZnO nanoparticles [J].Russ. J. Inorg. Chem., 2019, 64(14):1841-1848.
YOU Q H, CAI H, HU Z G, et al. Blue shift in absorption edge and widening of band gap of ZnO by Al doping and Al-N co-doping [J].J. Alloys Compd., 2015, 644:528-533.
HUR T B, HWANG Y H, KIM H K. Impurity band characteristics near the band edge of Al-doped ZnO [J].J. Appl. Phys., 2004, 96(3):1507-1510.
ISHIKAWA Y, OKAMOTO M, TANAKA S, et al. Influence of annealing on the 1.5 μm light emission of Er-doped ZnO thin films and its crystal quality [J].J. Mater. Res., 2005, 20(9):2578-2582.
LO J W, LIEN W C, LIN C A, et al. Er-doped ZnO nanorod arrays with enhanced 1 540 nm emission by employing Ag island films and high-temperature annealing [J].ACS Appl. Mater. Interfaces, 2011, 3(4):1009-1014.
PAL U, MELÉNDREZ R, CHERNOV V, et al. Thermoluminescence properties of ZnO and ZnO∶Yb nanophosphors [J].Appl. Phys. Lett., 2006, 89(18):183118-1-3.
HENG C L, ZHAO C N, ZHANG L, et al. Effects of Yb doping on the structure and near band-edge emission of ZnO thin films on Si after high temperature annealing [J].J. Lumin., 2020, 222:117153.
PHURUANGRAT A, YAYAPAO O, THONGTEM T, et al. Preparation, characterization and photocatalytic properties of Ho doped ZnO nanostructures synthesized by sonochemical method [J].Superlattice. Microst., 2014, 67:118-126.
KABONGO G L, MBULE P S, MHLONGO G H, et al. Photoluminescence quenching and enhanced optical conductivity of P3HT-derived Ho3+-doped ZnO nanostructures [J].Nanoscale Res. Lett., 2016, 11(1):418-1-11.
CHADI D J. Doping in znse, znte, mgse, and mgte wide-band-gap semiconductors [J].Phys. Rev. Lett., 1994, 72(4):534-537.
ZHANG L C, ZHAO F Z, WANG F F, et al. Improvement in electroluminescence performance of n-ZnO/Ga2O3/p-GaN heterojunction light-emitting diodes [J].Chin. Phys. B, 2013, 22(12):128502-1-5.
ZHANG L C, LI Q S, SHANG L, et al. Improvement of UV electroluminescence of n-ZnO/p-GaN heterojunction LED by ZnS interlayer [J].Opt. Express, 2013, 21(14):16578-16583.
XU C X, QIN F F, ZHU Q X, et al. Plasmon-enhanced ZnO whispering-gallery mode lasing [J].Nano Res., 2018, 11(6):3050-3064.
ABIYASA A P, YU S F, LAU S P, et al. Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance [J].Appl. Phys. Lett., 2007, 90(23):231106-1-3.
CHENG C W, SIE E J, LIU B, et al. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles [J].Appl. Phys. Lett., 2010, 96(7):071107-1-3.
PARK D, TAK Y, KIM J, et al. Low-temperature synthesized ZnO nanoneedles:XPS and PL analysis [J].Sur. Rev. Lett., 2007, 14(6):1061-1065.
ZSOLDOS Z, SARKANY A, GUCZI L. XPS evidence of alloying in Pd/ZnO catalysts [J].J. Catal., 1994, 145(1):235-238.
MO X M, LI Z X, LIU C F, et al. Improving and manipulating green-light electroluminescence in solution-processed ZnO nanocrystals via erbium doping [J].J. Lumin., 2019, 213:127-132.
YOU D T, XU C X, ZHAO J, et al. Single-crystal ZnO/AlN core/shell nanowires for ultraviolet emission and dual-color ultraviolet photodetection [J].Adv. Opt. Mater., 2019, 7(6):1801522-1-8.
YOU D T, XU C X, WANG X X, et al. A core@dual-shell nanorod array with a cascading band configuration for enhanced photocatalytic properties and anti-photocorrosion [J].J. Mater. Chem. A, 2020, 8(7):3726-3734.
YOU D T, XU C X, ZHANG W, et al. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays [J].Nano Energy, 2019, 62:310-318.
ZENG H B, DUAN G T, LI Y, et al. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:defect origins and emission controls [J].Adv. Funct. Mater., 2010, 20(4):561-572.
CHEN C, DUTTA M, STROSCIO M A. Confined and interface phonon modes in GaN/ZnO heterostructures [J].J. Appl. Phys., 2004, 95(5):2540-2546.
LIU S J, YU Q X, WANG J, et al. Photoluminescence of a ZnO/GaN heterostructure interface [J].Chin. Phys. Lett., 2009, 26(7):077805-1-4.
0
浏览量
87
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构