浏览全部资源
扫码关注微信
1.江苏大学 材料科学与工程学院,江苏 镇江 212013
2.中国科学院上海硅酸盐研究所 透明光功能无机材料重点实验室,上海 201899
3.中国科学院大学 材料与光电研究中心,北京 100049
4.上海应用技术大学 理学院,上海 201418
5.厦门大学 材料学院,福建 厦门 361005
[ "刘强(1964-),男,江苏镇江人,博士,教授,硕士研究生导师,2005年于江苏大学获得博士学位,主要从事发光材料和透明陶瓷等方面的研究。E-mail: lq88611338@163.com" ]
[ "李江(1977-),男,浙江绍兴人,博士,研究员,博士研究生导师,2007年于中国科学院上海硅酸盐研究所获得博士学位,主要从事光功能透明陶瓷方面的研究。E-mail: lijiang@mail.sic.ac.cn" ]
纸质出版日期:2021-10-01,
收稿日期:2021-03-31,
修回日期:2021-04-15,
移动端阅览
刘强, 李万圆, 刘欣, 等. 高亮度固态照明用黄绿光发射Ce∶LuAG透明陶瓷[J]. Chinese Journal of Luminescence, 2021,42(10):1520-1530.
QIANG LIU, WAN-YUAN LI, XIN LIU, et al. Green-yellow Emission Ce∶LuAG Transparent Ceramics for High-brightness Solid-state Lighting. [J]. 发光学报, 2021, 42(10): 1520-1530.
刘强, 李万圆, 刘欣, 等. 高亮度固态照明用黄绿光发射Ce∶LuAG透明陶瓷[J]. Chinese Journal of Luminescence, 2021,42(10):1520-1530. DOI: 10.37188/CJL.20210116.
QIANG LIU, WAN-YUAN LI, XIN LIU, et al. Green-yellow Emission Ce∶LuAG Transparent Ceramics for High-brightness Solid-state Lighting. [J]. 发光学报, 2021, 42(10): 1520-1530. DOI: 10.37188/CJL.20210116.
通过固相反应结合真空烧结制备了(Ce
x
Lu
1-
x
)
3
Al
5
O
12
(Ce∶LuAG
x
=0.0005
0.001
0.002
0.003
0.004)透明陶瓷. 厚度为1.0 mm的Ce∶LuAG陶瓷在500~800 nm波长范围内的直线透过率大于75%. 研究了不同浓度Ce∶LuAG陶瓷在454 nm蓝光LED激发下的吸收和发射特性,获得了可调的相关色温(5 653~7 433 K). 所制备的Ce∶LuAG陶瓷具有优异的热性能和发光性能,在225 ℃下的PL强度较室温仅下降7%
0.1%Ce∶LuAG陶瓷在蓝光LED激发下的发光效率达到179 lm/W. 进一步研究了不同厚度Ce∶LuAG陶瓷的发光饱和性能,1 mm厚的0.1%Ce∶LuAG陶瓷在功率密度为24.6 W/mm
2
的蓝光LD激发下获得了3 646 lm的高光通量,同时没有出现发光饱和现象. 研究结果表明,Ce∶LuAG透明陶瓷具有高发光效率和热稳定性,适合用于大功率固态照明.
A series of (Ce
x
Lu
1-
x
)
3
Al
5
O
12
(Ce∶LuAG
x
=0.0005
0.001
0.002
0.003
0.004) transparent ceramics were prepared
via
high-temperature reactive sintering under vacuum. The in-line transmittances of these transparent ceramics are higher than 75% at 500-800 nm with a thickness of 1.0 mm. Absorption and emission properties of ceramics with different Ce
3+
concentrations excited by 454 nm blue LED were investigated. An adjustable correlated color temperature(CCT)(5 653-7 433 K) was obtained. The as-prepared ceramics show remarkably superior thermal and luminescent properties: a low thermal quenching(7% drop at 225 ℃)
and a high luminous efficacy of 179 lm/W were obtained in the 0.1%Ce∶LuAG ceramics(1.0 mm thick) coupled with commercial blue InGaN LED chips
which also shows increasing emission intensity with increasing input power(up to 3.6 W). A high flux of 3 646 lm was obtained with robust Ce∶LuAG ceramics irradiated with a high laser power density of 24.6 W/mm
2
. Obviously
the fabricated transparent Ce∶LuAG ceramics are quite prospective as a highly efficient and thermally robust green-yellow color converter for high-power solid-state lighting(SSL) application.
发光饱和Ce∶LuAG陶瓷颜色转换器高亮度
luminescence saturationCe∶LuAG ceramicscolor converterhigh-brightness
HAITZ R, TSAO J Y. Solid-state lighting: ‘the case’ 10 years after and future prospects[J].Phys. Status Solidi A, 2011, 208(1): 17-29.
JRWIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J].Laser Photonics Rev., 2013, 7(6): 963-993.
WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG∶Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J].J. Mater. Chem. C, 2019, 7(13): 3901-3908.
QIAO J W, ZHAO J, LIU Q L, et al. Recent advances in solid-state LED phosphors with thermally stable luminescence[J].J. Rare Earth., 2019, 37(6): 565-572.
NAKAMURA S, SENOH M, MUKAI T. High-power InGaN/GaN double-heterostructure violet light emitting diodes[J].Appl. Phys. Lett., 1993, 62(19): 2390-2392.
NAKAMURA S. High-power InGaN/AlGaN double-heterostructure blue-light-emitting diodes[C].Proceedings of 1994 IEEE International Electron Devices Meeting, San Francisco, 1994: 567-570.
王兆武, 姬海鹏, 王飞翔, 等. 调控Al2O3晶型控制MgAl2O4∶Mn4+荧光粉中Mn价态研究[J].无机材料学报, 2021, 36(5): 513-520.
WANG Z W, JI H P, WANG F X, et al. Valence state control of manganese in MgAl2O4∶Mn4+ phosphor by varying the Al2O3 crystal form[J].J. Inorg. Mater., 2021, 36(5): 513-520. (in Chinese)
MING Z Q, ZHAO J, SWART H C, et al. Luminescence and energy transfer of color-tunable Lu2MgAl4SiO12∶Eu2+, Ce3+, Mn2+ phosphors[J].J. Rare Earth., 2020, 38(5): 506-513.
孔丽, 乔露, 刘莹莹, 等. 白光LED用绿色荧光粉Ba3(PO4)2∶Tb3+的发光性能研究[J].人工晶体学报, 2019, 48(10): 1869-1872.
KONG L, QIAO L, LIU Y Y, et al. Study on the luminescent properties of green phosphor Ba3(PO4)2∶Tb3+ for white LED[J].J. Synth. Cryst., 2019, 48(10): 1869-1872. (in Chinese)
董宇辉, 曾书玉, 韩博宁, 等. BN/CsPbX3复合纳米晶的制备及其白光LED应用[J].无机材料学报, 2019, 34(1): 72-78.
DONG Y H, ZENG S Y, HAN B N, et al. BN/CsPbX3 composite nanocrystals: synthesis and applications in white LED[J].J. Inorg. Mater., 2019, 34(1): 72-78. (in Chinese)
郑飞, 茅云蔚, 杨波波, 等. 基于YAG∶Ce3+荧光粉复合Eu3+掺杂荧光玻璃的激光照明器件[J].发光学报, 2019, 40(7): 842-848.
ZHENG F, MAO Y W, YANG B B, et al. Laser lighting device based on YAG∶Ce3+ phosphor composite Eu3+ doped phosphor-in-glasses[J].Chin. J. Lumin., 2019, 40(7): 842-848. (in Chinese)
ZHANG X J, SI S C, YU J B, et al. Improving the luminous efficacy and resistance to blue laser irradiation of phosphor-in-glass based solid state laser lighting through employing dual-functional sapphire plate[J].J. Mater. Chem.C, 2019, 7(2): 354-361.
PENG Y, MOU Y, SUN Q L, et al. Facile fabrication of heat-conducting phosphor-in-glass with dual-sapphire plates for laser-driven white lighting[J].J. Alloys Compd., 2019, 790: 744-749.
CHEN H, LIN H, XU J, et al. Chromaticity-tunable phosphor-in-glass for long-lifetime high-power warm w-LEDs[J].J. Mater. Chem. C, 2015, 3(31): 8080-8089.
ZHONG J S, CHEN D Q, ZHOU Y, et al. Stable and chromaticity-tunable phosphor-in-glass inorganic color converter for high-power warm white light-emitting diode[J].J. Eur. Ceram. Soc., 2016, 36(7): 1705-1713.
ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+∶YAG phosphor-in-glass[J].Laser Photonics Rev., 2014, 8(1): 158-164.
CAO Y F, HAN T, YANG J Y, et al. Tunable-spectrum Mn2+ doped garnet transparent ceramics for high-color rendering laser lighting[J].Int. J. Appl. Ceram. Technol., 2021, 18(3): 716-723.
LING J R, ZHOU Y F, XU W T, et al. Red-emitting YAG∶Ce, Mn transparent ceramics for warm WLEDs application[J].J. Adv. Ceram., 2020, 9(1): 45-54.
JI E K, SONG Y H, BAK S H, et al. The design of a ceramic phosphor plate with functional materials for application in high power LEDs[J].J. Mater. Chem. C, 2015, 3(48): 12390-12393.
HUA H, FENG S W, OUYANG Z Y, et al. YAGG∶Ce transparent ceramics with high luminous efficiency for solid-state lighting application[J].J. Adv. Ceram., 2019, 8(3): 389-398.
ZHU Q Q, WANG X J, WANG L, et al. β-Sialon∶Eu phosphor-in-glass: a robust green color converter for high power blue laser lighting[J].J. Mater. Chem. C, 2015, 3(41): 10761-10766.
ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photonics Rev., 2019, 13(10): 1900147-1-10.
SONG Y H, JI E K, JEONG B W, et al. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting[J].Sci. Rep., 2016, 6(1): 31206-1-7.
YAO Q, HU P, SUN P, et al. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J].Adv. Mater., 2020, 32(19): 1907888-1-7.
MCKITTRICK J, SHEA-ROHWER L E. Review: down conversion materials for solid-state lighting[J].J. Am. Ceram. Soc., 2014, 97(5): 1327-1352.
ZHANG Q, ZHENG R L, DING J Y, et al. High lumen density of Al2O3-LuAG∶Ce composite ceramic for high-brightness display[J].J. Am. Ceram. Soc., 2021, 104(7): 3260-3268.
LIU G H, ZHOU Z Z, SHI Y, et al. Ce∶YAG transparent ceramics for applications of high power LEDs: thickness effects and high temperature performance[J].Mater. Lett., 2015, 139: 480-482.
WAETZIG K, KUNZER M, KINSKI I. Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG∶Ce ceramic phosphors for white LEDs[J].J. Mater. Res., 2014, 29(19): 2318-2324.
HU S, LU C H, ZHOU G H, et al. Transparent YAG∶Ce ceramics for WLEDs with high CRI∶Ce3+ concentration and sample thickness effects[J].Ceram. Int., 2016, 42(6): 6935-6941.
XU J, WANG J, GONG Y X, et al. Investigation of an LuAG∶Ce translucent ceramic synthesized via spark plasma sintering: towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting[J].J. Eur. Ceram. Soc., 2018, 38(1): 343-347.
XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation[J].J. Mater. Chem. C, 2019, 7(37): 11449-11456.
DING H, LIU Z H, HU P, et al. High efficiency green-emitting LuAG∶Ce ceramic phosphors for laser diode lighting[J].Adv. Opt. Mater., 2021, 9(8): 2002141.
ZHANG Y L, HU S, WANG Z J, et al. Pore-existing Lu3Al5O12∶Ce ceramic phosphor: an efficient green color converter for laser light source[J].J. Lumin., 2018, 197: 331-334.
CHEN X P, HU Z W, CAO M Q, et al. Influence of cerium doping concentration on the optical properties of Ce, Mg∶LuAG scintillation ceramics[J].J. Eur. Ceram. Soc., 2018, 38(9): 3246-3254.
BARTOSIEWICZ K, BABIN V, KAMADA K, et al. Effects of Gd/Lu ratio on the luminescence properties and garnet phase stability of Ce3+ activated GdxLu3-xAl5O12 single crystals[J].Opt. Mater., 2018, 80: 98-105.
LIU Q, YUAN Y, LI J, et al. Preparation and properties of transparent Eu∶YAG fluorescent ceramics with different doping concentrations[J].Ceram. Int., 2014, 40(6): 8539-8545.
XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications[J].Chem. Soc. Rev., 2017, 46(1): 275-299.
CHIANG C C, TSAI M S, HON M H. Luminescent properties of cerium-activated garnet series phosphor: structure and temperature effects[J].J. Electrochem. Soc., 2008, 155(6): B517-B520.
LIU X, ZHOU H Y, HU Z W, et al. Transparent Ce∶GdYAG ceramic color converters for high-brightness white LEDs and LDs[J].Opt. Mater., 2019, 88: 97-102.
0
浏览量
249
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构