浏览全部资源
扫码关注微信
合肥工业大学 光电技术研究院, 特种显示技术国家工程实验室,现代显示技术省部共建国家重点实验室培育基地, 安徽 合肥 230009
[ "陈晗(1996-),男,湖南长沙人,硕士研究生,2018年于合肥工业大学获得学士学位,主要从事有机超薄膜场效应晶体管及其传感特性的研究。E-mail: 18656096421@sina.cn" ]
[ "王晓鸿(1981-),女,山东临朐人,博士,副研究员,2016年于合肥工业大学获得博士学位,主要从事有机共轭聚合物光电材料、有机光电晶体管器件及印刷有机电子器件的研究。Email: xhwang11@hfut.edu.cn" ]
纸质出版日期:2021-06-01,
收稿日期:2021-03-23,
修回日期:2021-04-06,
扫 描 看 全 文
陈晗, 胡琪, 邱龙臻, 等. 具有叠层超薄膜结构的高性能有机晶体管氨气传感器[J]. 发光学报, 2021,42(6):871-879.
Han CHEN, Qi HU, Long-zhen QIU, et al. High-performance Organic Transistor Ammonia Sensor with Laminated Ultrathin Film Structure[J]. Chinese Journal of Luminescence, 2021,42(6):871-879.
陈晗, 胡琪, 邱龙臻, 等. 具有叠层超薄膜结构的高性能有机晶体管氨气传感器[J]. 发光学报, 2021,42(6):871-879. DOI: 10.37188/CJL.20210107.
Han CHEN, Qi HU, Long-zhen QIU, et al. High-performance Organic Transistor Ammonia Sensor with Laminated Ultrathin Film Structure[J]. Chinese Journal of Luminescence, 2021,42(6):871-879. DOI: 10.37188/CJL.20210107.
研究了基于给-受体共轭聚合物双(2-氧代二氢吲哚-3-亚基) -苯并二呋喃-二酮和联噻吩(PBIBDF-BT) 超薄膜叠层晶体管的电学性能及氨气传感特性。使用相分离方法以及转移-刻蚀步骤制备了不同堆叠层数的PBIBDF-BT超薄膜。系统地研究了PBIBDF-BT超薄膜堆叠层数与器件性能的关系。实验结果表明,单层PBIBDF-BT超薄膜器件对氨气具有良好的传感性能,电学性能较差。超薄膜叠层能够有效提高传感器的电学性能,随着超薄膜叠层数量的增加,器件迁移率不断上升;超薄膜层数增加为3层及更多时迁移率上升趋势变缓,迁移率最大值为0.58 cm
2
·V
-1
·s
-1
。超薄膜叠层器件氨气传感性能在层数为2层后呈现下降趋势。通过PBIBDF-BT超薄膜叠层方法,制备出在1.0×10
-5
氨气环境下,迁移率为0.23 cm
2
·V
-1
·s
-1
、源漏电流变化百分比为90.7%、性能良好的OFET氨气传感器。
The electrical properties and the ammonia sensing transistor characteristics of ultrathin film laminated transistors based on donor-acceptor conjugated polymer bis(2-oxoindole-3-ylidene)-benzodifuran-dione and bithiophene(PBIBDF-BT) were studied. The PBIBDF-BT ultrathin films with different stacking layers were prepared by phase separation method and transfer-etching step. The relationship between the number of PBIBDF-BT ultrathin film stacks and the performance of the device were systematically studied. Experimental results indicate that the single-layer PBIBDF-BT ultrathin film device has good sensing performance for ammonia
but the electrical performance is poor. Ultrathin film stacking can effectively improve the electrical performance of the device. As the number of ultrathin film stacks increases
the device mobility increased. When the number of ultrathin film layers increases to 3 layers or more
the increasing trend of mobility slows down and the maximum mobility is 0.58 cm
2
·V
-1
·s
-1
. The ammonia sensing performance of ultrathin film laminate devices shows a downward trend when the number of layers is 2. Through the PBIBDF-BT ultrathin film stacking method
an OFET ammonia gas sensor with good performance was prepared under 1.0×10
-5
ammonia environment
with a mobility of 0.23 cm
2
·V
-1
·s
-1
the source-drain current change percentage of 90.7%.
有机超薄膜晶体管给体-受体共轭聚合物氨气检测超薄膜叠层
organic ultra-thin film transistordonor-acceptor conjugated polymerammonia gas detectionultrathin film stack
YU S H, CHO J, SIM K M, et al. Morphology-driven high-performance polymer transistor-based ammonia gas sensor [J].ACS Appl. Mater. Interfaces, 2016, 8(10):6570-6576.
TRUL A A, SIZOV A S, CHEKUSOVA V P, et al. Organosilicon dimer of BTBT as a perspective semiconductor material for toxic gas detection with monolayer organic field-effect transistors [J].J. Mater. Chem. C, 2018, 6(36):9649-9659.
SOMEYA T, DODABALAPUR A, HUANG J, et al. Chemical and physical sensing by organic field-effect transistors and related devices [J].Adv. Mater., 2010, 22(34):3799-3811.
TORSI L, MAGLIULO M, MANOLI K, et al. Organic field-effect transistor sensors:a tutorial review [J].Chem. Soc. Rev., 2013, 42(22):8612-8628.
ZHANG C C, CHEN P L, HU W P. Organic field-effect transistor-based gas sensors [J].Chem. Soc. Rev., 2015, 44(8):2087-2107.
LI H, SHI W, SONG J, et al. Chemical and biomolecule sensing with organic field-effect transistors [J].Chem. Rev., 2019, 119(1):3-35.
ZANG Y P, ZHANG F J, HUANG D Z, et al. Specific and reproducible gas sensors utilizing gas-phase chemical reaction on organic transistors [J].Adv. Mater., 2014, 26(18):2862-2867.
HAN S J, ZHUANG X M, JIANG Y M, et al. Poly(vinyl alcohol) as a gas accumulation layer for an organic field-effect transistor ammonia sensor [J].Sens. Actuators B:Chem., 2017, 243:1248-1254.
YANG Y, ZHANG G X, LUO H W, et al. Highly sensitive thin-film field-effect transistor sensor for ammonia with the DPP-bithiophene conjugated polymer entailing thermally cleavable tert-butoxy groups in the side chains [J].ACS Appl. Mater. Interfaces, 2016, 8(6):3635-3643.
YANG G, DI C A, ZHANG G X, et al. Highly sensitive chemical-vapor sensor based on thin-film organic field-effect transistors with benzothiadiazole-fused-tetrathiafulvalene [J].Adv. Funct. Mater., 2013, 23(13):1671-1676.
ZHANG S Q, ZHAO Y W, DU X W, et al. Gas sensors based on nano/microstructured organic field-effect transistors [J].Small, 2019, 15(12):1805196-1-16.
GE F, WEI S Y, LIU Z, et al. Tailoring structure and field-effect characteristics of ultrathin conjugated polymer films via phase separation [J].ACS Appl. Mater. Interfaces, 2018, 10(11):9602-9611.
JI S L, WANG H B, WANG T, et al. A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film [J].Adv. Mater., 2013, 25(12):1755-1760.
LIU X L, LUO X G, NAN H Y, et al. Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors [J].Adv. Mater., 2016, 28(26):5200-5205.
ZHU Y Y, XIE Q, SUN Y, et al. High-performance NO2 sensors based on ultrathin heterogeneous interface layers [J].Adv. Mater. Interfaces, 2020, 7(1):1901579.
CHEN H L, DONG S H, BAI M L, et al. Solution-processable, low-voltage, and high-performance monolayer field-effect transistors with aqueous stability and high sensitivity [J].Adv. Mater., 2015, 27(12):2113-2120.
CHEN H M, XING X, ZHU M, et al. Low-voltage, high-performance flexible organic field-effect transistors based on ultrathin single-crystal microribbons [J].ACS Appl. Mater. Interfaces, 2019, 11(37):34188-34195.
FABIANO S, MUSUMECI C, CHEN Z H, et al. From monolayer to multilayer N-channel polymeric field-effect transistors with precise conformational order [J].Adv. Mater., 2012, 24(7):951-956.
FABIANO S, YOSHIDA H, CHEN Z H, et al. Orientation-dependent electronic structures and charge transport mechanisms in ultrathin polymeric n-channel field-effect transistors [J].ACS Appl. Mater. Interfaces, 2013, 5(10):4417-4422.
D'INNOCENZO V, LUZIO A, ABDALLA H, et al. Two-dimensional charge transport in molecularly ordered polymer field-effect transistors [J].J. Mater. Chem. C, 2016, 4(47):11135-11142.
GE F, ZHANG C, YAO H B, et al. Precisely controlling the structure of ultrathin semiconducting films by a laminating method for high-performance organic field-effect transistors [J].ACS Appl. Mater. Interfaces, 2019, 11(51):48147-48154.
ZHANG G B, LI P, TANG L X, et al. A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors [J].Chem. Commun., 2014, 50(24):3180-3183.
WANG Q H, ZHU M, WU D, et al. Phototransistors based on a donor-acceptor conjugated polymer with a high response speed [J].J. Mater. Chem. C, 2015, 3(41):10734-10741.
0
浏览量
210
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构