浏览全部资源
扫码关注微信
1.桂林理工大学 材料科学与工程学院, 广西 桂林 541000
2.上海大学 材料科学与工程学院, 上海 200444
[ "李婷(1994-),女,广西贵港人,硕士研究生,2018年于烟台大学获得学士学位,主要从事应力发光材料的研究。E-mail: LT9455@shu.edu.cn" ]
[ "杨云凌(1995-),女,四川达州人,博士研究生,2018年于上海大学获得硕士学位,主要从事应力发光材料的研究。E-mail:yyl520zsl@shu.edu.cn" ]
[ "申玉芳(1977-),女,河北保定人,博士,副教授,2012年于广西大学获得博士学位,主要从事无机材料的研究。E-mail: yuffangshen@gmail.com" ]
[ "张志军(1982-),男,安徽黄山人,博士,教授,2009年于中国科学院上海硅酸盐研究所获得博士学位,主要从事无机光功能材料 (单晶、陶瓷、薄膜) 与器件(主要包括闪烁发光材料、光谱转换材料、应力发光材料以及相关器件)制备的研究。E-mail: zhangzhijun@shu.edu.cn", "青年编委介绍:", "张志军(1982-),博士,教授,2009年于中国科学院上海硅酸盐研究所获得博士学位,2009—2012年在荷兰埃因霍温理工大学(TU/e)从事博士后研究。2014年4月至今任上海大学特聘研究员和教授。担任上海大学材料学院能量转换材料与器件课题组组长、无机材料教研室副主任,Current Chinese Science: Electronic and Crystal Structures编委、《发光学报》和Journal of Advanced Ceramics青年编委。 长期从事无机光功能材料(超快高分辨闪烁材料、应力发光材料、光谱转换材料)与器件制备及应用研究。主持和参与10余项国家自然科学基金和上海市重大研发计划项目、上大新材料(泰州)研究院项目等。至今发表高水平SCI论文近120篇,他引2 300余次。申请国家发明专利18项,授权12项。" ]
纸质出版日期:2021-06-01,
收稿日期:2021-03-17,
修回日期:2021-03-31,
移动端阅览
李婷, 杨云凌, 范雨婷, 等. 通过Pr3+掺杂SrZnOS实现应力发光颜色调控及其应力发光机理[J]. 发光学报, 2021,42(6):818-828.
TING LI, YUN-LING YANG, YU-TING FAN, et al. Pr3+ Doped SrZnOS to Achieve Tunable Mechanoluminescence Color and Mechanoluminescence Mechanism. [J]. Chinese journal of luminescence, 2021, 42(6): 818-828.
李婷, 杨云凌, 范雨婷, 等. 通过Pr3+掺杂SrZnOS实现应力发光颜色调控及其应力发光机理[J]. 发光学报, 2021,42(6):818-828. DOI: 10.37188/CJL.20210094.
TING LI, YUN-LING YANG, YU-TING FAN, et al. Pr3+ Doped SrZnOS to Achieve Tunable Mechanoluminescence Color and Mechanoluminescence Mechanism. [J]. Chinese journal of luminescence, 2021, 42(6): 818-828. DOI: 10.37188/CJL.20210094.
采用高温固相法成功制备出新型Sr
1-2
x
Pr
x
Li
x
ZnOS应力发光材料。通过XRD、扫描电镜、漫反射、光致发光、荧光衰减、应力发光和热释光等测试详细研究了晶体结构、形貌、光致和力致发光性能及其发光机理。在298 nm激发下,Sr
1-2
x
Pr
x
Li
x
ZnOS的发光位于522 nm和674 nm,分别来自于Pr
3+
离子从激发态
3
P
0
到
3
H
5
、
3
F
2
的跃迁。随着Pr
3+
浓度增加,发光强度先增加后减小,在
x
=0.015时发光最强,且衰减时间从17.79 μs减短到5.93 μs。在载荷为5 000 N激发下可以获得Pr
3+
离子的522 nm和674 nm的应力发光发射带。位于522 nm和674 nm的两个发射带的相对强度
I
G
/I
R
随着掺杂浓度的增加呈线性减小,且在色坐标图(CIE)和实物应力发光照片中均能观测到应力发光的颜色从黄绿光到橙黄光的转变。该材料的研究将为应力发光领域提供调控颜色的新思路,在压力显示成像和应力传感领域具有潜在的应用价值。
The development of new mechanoluminescence(ML) materials for stress sensor and imaging is of great importance
owing to their unique physical
chemical
and optical properties. A series of novel Sr
1-2
x
Pr
x
Li
x
ZnOS phosphor were successfully synthesized by the high temperature solid state reaction method. The crystal structure
morphology
photoluminescence(PL)
ML properties and luminescence mechanism of Sr
1-2
x
Pr
x
Li
x
ZnOS were studied in detail. The unit cell volume of Sr
1-2
x
Pr
x
Li
x
ZnOS decreased from 0.153 52 to 0.153 05 nm
3
with the concentration Pr
3+
increasing from
x
=0.005 to 0.04. The emission bands of the Pr
3+
ion at 522 and 674 nm originated from the transition from excited state
3
P
0
to lower energy levels
3
H
5
and
3
F
2
. The PL intensity reaches the maximum when the Pr
3+
ion concentration reached 0.015. The decay time decreases from 17.79 to 5.93 μs with increasing Pr
3+
concentration. At the same time
the emission peaked at 522 and 674 nm were observed under the load of 5 000 N. Meanwhile
the ML intensity first increases reaching the maximum of the Pr
3+
ion concentration at
x
=0.02
and then decreases with the doped concentration increasing. In addition
the relative intensity
I
G
/I
R
value of the two emission bands at 522 and 674 nm decreased with the Pr
3+
concentration increasing from
x
=0.005 to 0.04. Moreover
the ML color transition from yellow-green light to orange-yellow light emission can be observed in both the color coordinate diagram and the sample photos under pressure. Therefore
these materials offer a new approach to controlling luminescent colors in the ML field
with potential applications in the fields of stress display
imaging and stress sensors.
应力发光SrZnOSPr3+
mechanoluminescenceSrZnOSPr3+
MATSUI H, XU C N, LIU Y, et al. Origin of mechanoluminescence from Mn-activated ZnAl2O4: triboelectricity-induced electroluminescence [J].Phys. Rev. B, 2004, 69(23):235109.
JEONG S M, SONG S, KIM H. Simultaneous dual-channel blue/green emission from electro-mechanically powered elastomeric zinc sulphide composite [J].Nano Energy, 2016, 21:154-161.
MA Z D, ZHOU J Y, ZHANG J C, et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence [J].Mater. Horiz., 2019, 6(10):2003-2008.
WANG F L, WANG F L, WANG X D, et al. Mechanoluminescence enhancement of ZnS∶Cu, Mn with piezotronic effect induced trap-depth reduction originated from PVDF ferroelectric film [J].Nano Energy, 2019, 63:103861-1-7.
ONWONA-AGYEMAN B, XU C N, SHI W S, et al. Triboluminescence of ZnS∶Mn films deposited on quartz substrates with ZnO buffer layers [J].Jpn. J. Appl. Phys., 2002, 41(8R):5259-5261.
LIU L S, XU C N, YOSHIDA A, et al. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis [J].Adv. Mater. Technol., 2019, 4(1):1800336.
TU D, XU C N, KAMIMURA S, et al. Ferroelectric Sr3Sn2O7∶Nd3+:a new multipiezo material with ultrasensitive and sustainable near-infrared piezoluminescence [J].Adv. Mater., 2020, 32(25):1908083-1-9.
XU C N, YAMADA H, WANG X S, et al. Strong elasticoluminescence from monoclinic-structure SrAl2O4 [J].Appl. Phys. Lett., 2004, 84(16):3040-3042.
ZHANG J C, WANG X S, YAO X, et al. Strong elastico-mechanoluminescence in diphase (Ba, Ca) TiO3∶Pr3+ with self-assembled sandwich architectures [J].J. Electrochem. Soc., 2010, 157(12):G269.
ZHANG H W, YAMADA H, TERASAKI N. Ultraviolet mechanoluminescence from SrAl2O4∶Ce and SrAl2O4∶Ce, Ho [J].Appl. Phys. Lett., 2007, 91(8):081905.
TU D, XU C N, YOSHIDA A, et al. LiNbO3∶Pr3+:a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence [J].Adv. Mater., 2017, 29(22):1606914-1-4.
WU C, ZHENG S S, WANG Z F, et al. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility [J].Adv. Funct. Mater., 2018, 28(34):1803168-1-8.
ZHANG H, WEI Y, HUANG W. Recent development of elastico-mechanoluminescent phosphors [J].J. Lumin., 2019, 207:137-148.
DUAN C J, DELSING A C A, HINTZEN H T. Photoluminescence properties of novel red-emitting Mn2+-activated MZnOS (M=Ca, Ba) phosphors [J].Chem. Mater., 2009, 40(25):1010-1016.
ZHANG Z J, FENG A, ZHANG S L, et al. Mechanical properties of layered oxysulfide CaZnOS from first principle calculations [J].J. Alloys Compd., 2016, 670:41-47.
ZHOU S, LIN D B, SU Y M, et al. Enhanced dielectric, ferroelectric, and optical properties in rare earth elements doped PMN-PT thin films [J].J. Adv. Ceram., 2021, 10(1):98-107.
DU Y Y, JIANG Y, SUN T Y, et al. Mechanically excited multicolor luminescence in lanthanide ions [J].Adv. Mater., 2019, 31(7):1807062.
YANG Y L, LI Q L, YANG X C, et al. Color manipulation of Bi3+-activated CaZnOS under stress with ultra-high efficiency and low threshold for anticounterfeiting applications [J].J. Mater. Chem. C, 2020, 8(10):3308-3315.
ZHANG J C, ZHAO L Z, LONG Y Z, et al. Color manipulation of intense multiluminescence from CaZnOS∶Mn2+ by Mn2+ concentration effect [J].Chem. Mater., 2015, 27(21):7481-7489.
ZHANG Z J, FENG A, CHEN X Y, et al. Photoluminescence properties and energy levels of RE (RE=Pr, Sm, Er, Tm) in layered-CaZnOS oxysulfide [J].J. Appl. Phys., 2013, 114(21):213518-1-8.
LI X Y, SNETKOV I L, YAKOVLEV A, et al. Fabrication and performance evaluation of novel transparent ceramics RE∶Tb3Ga5O12 (RE=Pr, Tm, Dy) toward magneto-optical application [J].J. Adv. Ceram., 2021, 10(2):271-278.
LIU W, LAI K T, ECKHARDT K, et al. Synthesis and characterization of sulfide oxide SrZnSO with strongly polar crystal structure [J].J. Solid State Chem., 2017, 246:225-229.
ZHOU Y, YANG Y L, FAN Y T, et al. Intense red photoluminescence and mechanoluminescence from Mn2+-activated SrZnSO with a layered structure [J].J. Mater. Chem. C, 2019, 7(26):8070-8078.
LONG Z W, WEN Y G, ZHOU J H, et al. No-interference reading for optical information storage and ultra-multiple anti-counterfeiting applications by designing targeted recombination in charge carrier trapping phosphors [J].Adv. Opt. Mater., 2019, 7(10):1900006.
ZHANG J C, LONG Y Z, YAN X, et al. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping [J].Chem. Mater., 2016, 28(11):4052-4057.
PAN C, ZHANG J C, ZHANG M, et al. Trap-controlled mechanoluminescence in Pr3+-activated M2Nb2O7 (M=Sr, Ca) isomorphic perovskites [J].Opt. Mater. Express, 2018, 8(6):1425-1434.
CHEN C J, ZHUANG Y X, TU D, et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO [J].Nano Energy, 2020, 68:104329.
RESHAK A H, ABBASS N M, BILA J, et al. Noncentrosymmetric sulfide oxide MZnSO (M=Ca or Sr) with strongly polar structure as novel nonlinear crystals [J].J. Phys. Chem. C, 2019, 123(44):27172-27180.
ZHANG Z J, TEN KATE O M, DELSING A, et al. Photoluminescence properties and energy level locations of RE3+(RE=Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors [J].J. Mater. Chem. C, 2012, 22(19):9813-9820.
BASAVARAJ R B, NAGABHUSHANA H, et al. Mimosa pudica mediated praseodymium substituted calcium silicate nanostructures for white LED application [J].J. Alloys Compd., 2017, 690:730-740.
LI K, FAN J, SHANG M M, et al. Sr2Y8(SiO4)6O2∶Bi3+/Eu3+:a single-component white-emitting phosphor via energy transfer for UV w-LEDs [J].J. Mater. Chem. C, 2015, 3(38):9989-9998.
DEOPA N, RAO A S, MAHAMUDA S, et al. Spectroscopic studies of Pr3+ doped lithium lead alumino borate glasses for visible reddish orange luminescent device applications [J].J. Alloys Compd., 2017, 708:911-921.
SUTHANTHIRAKUMAR P, BASAVAPOORNIMA C, MARIMUTHU K. Effect of Pr3+ ions concentration on the spectroscopic properties of Zinc telluro-fluoroborate glasses for laser and optical amplifier applications [J].J. Lumin., 2017, 187:392-402.
YI G Q, LI W W, SONG J H, et al. Preparation and characterizations of Pr3+∶CaF2 transparent ceramics with different doping concentrations [J].Ceram. Int., 2019, 45(3):3541-3546.
庹娟, 王林香, 叶颖, 等. 金属离子Li+, Na+, K+, Ca2+, Ba2+掺杂Lu2O3∶Pr3+荧光粉的制备及发光特性研究 [J].发光学报, 2018, 39(3):307-314.
TUO J, WANG L X, YE Y, et al. Preparation and luminescence properties of Lu2O3∶Pr3+ phosphors codoped with Li+, Na+, K+, Ca2+, Ba2+ ions [J].Chin. J. Lumin., 2018, 39(3):307-314. (in Chinese)
ZHANG J C, FAN X H, YAN X, et al. Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging [J].Acta Mater., 2018, 152:148-154.
PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates [J].Nat. Mater., 2012, 11(1):58-63.
VAN DEN EECKHOUT K, POELMAN D, SMET P F. Persistent luminescence in non-Eu2+-doped compounds:a review [J].Materials, 2013, 6(7):2789-2818.
LI L J, WONDRACZEK L, PENG M Y, et al. Force-induced 1 540 nm luminescence:role of piezotronic effect in energy transfer process for mechanoluminescence [J].Nano Energy, 2020, 69:104413.
ZHENG W X, WU H Y, JU G F, et al. Crystal field modulation-control, bandgap engineering and shallow/deep traps tailoring-guided design of a color-tunable long-persistent phosphor (Ca, Sr)Ga4O7∶Mn2+, Bi3+ [J].Dalton Trans., 2019, 48(1):253-265.
ZHOU H, DU Y D, WU C, et al. Understanding the mechanoluminescent mechanisms of manganese doped zinc sulfide based on load effects [J].J. Lumin., 2018, 203:683-688.
0
浏览量
248
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构