浏览全部资源
扫码关注微信
北京工业大学化学与生物系 绿色催化与分离北京市重点实验室,环境安全与生物效应中心,北京 100124
[ "张震(1997-),男,河北沧州人,硕士研究生, 2019年于内蒙古大学获得学士学位,主要从事碳点的光学性质的研究。E-mail: zhangzhen@emails.bjut.edu.cn" ]
[ "曲丹(1988-),女,黑龙江安达人,博士,教授,博士研究生导师,2017年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事荧光碳点的光学性质调控及应用的研究。E-mail: danqu@bjut.edu.cn" ]
[ "孙再成(1973-),男,黑龙江绥化人,博士,教授,博士研究生导师,1999年于中国科学院长春应用化学研究所获得博士学位,主要从事具有可见光响应的光催化体系以及荧光碳点的合成与应用的研究。E-mail: sunzc@bjut.edu.cn" ]
纸质出版日期:2021-08-01,
收稿日期:2021-02-12,
修回日期:2021-03-02,
扫 描 看 全 文
张震, 曲丹, 安丽, 等. 荧光碳点的制备、发光机理及应用[J]. 发光学报, 2021,42(8):1125-1140.
Zhen ZHANG, Dan QU, Li AN, et al. Preparation, Luminescence Mechanism and Application of Fluorescent Carbon Dots[J]. Chinese Journal of Luminescence, 2021,42(8):1125-1140.
张震, 曲丹, 安丽, 等. 荧光碳点的制备、发光机理及应用[J]. 发光学报, 2021,42(8):1125-1140. DOI: 10.37188/CJL.20210061.
Zhen ZHANG, Dan QU, Li AN, et al. Preparation, Luminescence Mechanism and Application of Fluorescent Carbon Dots[J]. Chinese Journal of Luminescence, 2021,42(8):1125-1140. DOI: 10.37188/CJL.20210061.
碳点合成原料来源广泛,发光性能可调,生物相容性良好,在生物成像、离子检测、发光材料等领域具有巨大的应用潜力。本文综述了碳点的制备方法、发光原理以及应用,重点介绍了碳点的制备方法,总结了近年来碳点在催化、生物成像等领域的最新进展;指出未来研究中需要进一步对碳点的合成进行优化,深入探究碳点的发光机理;制备发光波长可调、尺寸可调的碳点,对其在发光器件、生物成像、传感等领域的应用具有重要意义。
Carbon dots have the advantages of wide sources of synthetic raw materials
adjustable luminescence performance
and good biocompatibility. They have huge application potential in the fields of bioimaging
ion detection
luminescent materials and other fields. The preparation methods
the luminescence principle and the application of carbon dots are reviewed. The preparation method of carbon dots is emphasized. The latest progress of carbon dots in the fields of catalysis and biological imaging in recent years is summarized. The synthesis of carbon dots is further optimized
and the luminescence mechanism of carbon dots is deeply explored. The preparation of carbon dots with adjustable luminescence wavelength and adjustable size is of great significance for their applications in light-emitting devices
bioimaging
sensing and other fields.
碳点发光机理生物成像离子检测催化
carbon dotsPL mechanismbioimagingion detectioncatalysis
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40): 12736-12737.
SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J].J. Am. Chem. Soc., 2006, 128(24): 7756-7757.
ZHAO H X, LIU L Q, LIU Z D, et al. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots [J].Chem. Commun., 2011, 47(9): 2604-2606.
QU D, SUN Z C, ZHENG M, et al. Three colors emission from S, N co-doped graphene quantum dots for visible light H2 production and bioimaging [J].Adv. Opt. Mater., 2015, 3(3): 360-367.
QU D, ZHENG M, LI J, et al. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications [J].Light:Sci. Appl., 2015, 4(12): e364.
ZHENG M, RUAN S B, LIU S, et al. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells [J].ACS Nano, 2015, 9(11): 11455-11461.
BAO L, LIU C, ZHANG Z L, et al. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning [J].Adv. Mater., 2015, 27(10): 1663-1667.
PARK M, KIM H S, YOON H, et al. Controllable singlet-triplet energy splitting of graphene quantum dots through oxidation: from phosphorescence to TADF [J].Adv. Mater., 2020, 32(31): 2000936.
BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights [J].Angew. Chem. Int. Ed., 2010, 49(38): 6726-6744.
WANG F, PANG S P, WANG L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents [J].Chem. Mater., 2010, 22(16): 4528-4530.
CAO L, WANG X, MEZIANI M J, et al. Carbon dots for multiphoton bioimaging [J].J. Am. Chem. Soc., 2007, 129(37): 11318-11319.
CUI L, REN X, WANG J, et al. Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging [J].Mater. Today Nano, 2020, 12: 100091.
ZHOU J G, BOOKER C, LI R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MECNTs) [J].J. Am. Chem. Soc., 2007, 129(4): 744-745.
ZHAO Q L, ZHANG Z L, HUANG B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite [J].Chem. Commun., 2008, (41): 5116-5118.
ZHENG L Y, CHI Y W, DONG Y Q, et al. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite [J].J. Am. Chem. Soc., 2009, 131(13): 4564-4565.
LU J, YANG J X, WANG J Z, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids [J].ACS Nano, 2009, 3(8): 2367-2375.
DONG Y, ZHOU N N, LIN X M, et al. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon [J].Chem. Mater., 2010, 22(21): 5895-5899.
MAO X J, ZHENG H Z, LONG Y J, et al. Study on the fluorescence characteristics of carbon dots [J].Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2010, 75(2): 553-557.
ZHANG S R, HE Q, LI R J, et al. Study on the fluorescence carbon nanoparticles [J].Mater. Lett., 2011, 65(15-16): 2371-2373.
QIAO Z A, WANG Y F, GAO Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation [J].Chem. Commun., 2010, 46(46): 8812-8814.
BOTTINI M, BALASUBRAMANIAN C, DAWSON M I, et al. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes [J].J. Phys. Chem. B, 2006, 110(2): 831-836.
YANG S T, WANG X, WANG H F, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents [J].J. Phys. Chem. C, 2009, 113(42): 18110-18114.
HU S L, NIU K Y, SUN J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation [J].J. Mater. Chem., 2009, 19(4): 484-488.
LI X Y, WANG H Q, SHIMIZU Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents [J].Chem. Commun., 2011, 47(3): 932-934.
LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J].Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434.
MING H, MA Z, LIU Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property [J].Dalton Trans., 2012, 41(31): 9526-9531.
LIU H P, YE T, MAO C D. Fluorescent carbon nanoparticles derived from candle soot [J].Angew. Chem. Int. Ed., 2007, 46(34): 6473-6475.
RAY S C, SAHA A, JANA N R, et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application [J].J. Phys. Chem. C, 2009, 113(43): 18546-18551.
TIAN L, GHOSH D, CHEN W, et al. Nanosized carbon particles from natural gas soot [J].Chem. Mater., 2009, 21(13): 2803-2809.
GUO Y, LI B X. Carbon dots-initiated luminol chemiluminescence in the absence of added oxidant [J].Carbon, 2015, 82: 459-469.
BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Surface functionalized carbogenic quantum dots [J].Small, 2008, 4(4): 455-458.
WANG F, KREITER M, HE B, et al. Synthesis of direct white-light emitting carbogenic quantum dots [J].Chem. Commun., 2010, 46(19): 3309-3311.
WANG F, XIE Z, ZHANG H, et al. Highly luminescent organosilane-functionalized carbon dots [J].Adv. Funct. Mater., 2011, 21(6): 1027-1031.
LIU Y, LIU C Y, ZHANG Z Y. Synthesis of highly luminescent graphitized carbon dots and the application in the Hg2+ detection [J].Appl. Surf. Sci., 2012, 263: 481-485.
CHERNYAK S, PODGORNOVA A, DOROFEEV S, et al. Synthesis and modification of pristine and nitrogen-doped carbon dots by combining template pyrolysis and oxidation [J].Appl. Surf. Sci., 2020, 507: 145027.
MA C A, YIN C S, FAN Y J, et al. Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method [J].J. Mater. Sci., 2019, 54(13): 9372-9384.
THONGSAI N, NAGAE Y, HIRAI T, et al. Multifunctional nitrogen-doped carbon dots from maleic anhydride and tetraethylenepentamine via pyrolysis for sensing, adsorbance, and imaging applications [J].Sens. Actuators B:Chem., 2017, 253: 1026-1033.
ZHANG B, LIU C Y, LIU Y. A novel one-step approach to synthesize fluorescent carbon nanoparticles [J].Eur. J. Inorg. Chem., 2010, 2010(28): 4411-4414.
YANG Z C, WANG M, YONG A M, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate [J].Chem. Commun., 2011, 47(42): 11615-11617.
HSU P C, CHANG H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups [J].Chem. Commun., 2012, 48(33): 3984-3986.
WANG B Y, YU J K, SUI L Z, et al. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal [J].Adv. Sci., 2020, 8(1): 2001453-1-8.
SAHU S, BEHERA B, MAITI T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents [J].Chem. Commun., 2012, 48(70): 8835-8837.
LU W B, QIN X Y, LIU S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(Ⅱ) ions [J].Anal. Chem., 2012, 84(12): 5351-5357.
SHA Y F, LOU J Y, BAI S Z, et al. Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper(Ⅱ) ions [J].Mater. Res. Bull., 2013, 48(4): 1728-1731.
LIU J J, GENG Y J, LI D W, et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum [J].Adv. Mater., 2020, 32(17): 1906641.
ZHU H, WANG X L, LI Y L, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties [J].Chem. Commun., 2009, (34): 5118-5120.
ZHAI X Y, ZHANG P, LIU C J, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis [J].Chem. Commun., 2012, 48(64): 7955-7957.
PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates [J].Chem. Mater., 2009, 21(23): 5563-5565.
WANG X H, QU K G, XU B L, et al. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents [J].J. Mater. Chem., 2011, 21(8): 2445-2450.
JIANG J, HE Y, LI S Y, et al. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement [J].Chem. Commun., 2012, 48(77): 9634-9636.
SUN S, ZHANG L, JIANG K, et al. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents [J].Chem. Mater., 2016, 28(23): 8659-8668.
LIU R L, WU D Q, LIU S H, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers [J].Angew. Chem. Int. Ed., 2009, 48(25): 4598-4601.
ZONG J, ZHU Y H, YANG X L, et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors [J].Chem. Commun., 2011, 47(2): 764-766.
GU Z G, LI D J, ZHENG C, et al. MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications [J].Angew. Chem. Int. Ed., 2017, 56(24): 6853-6858.
LI H T, HE X D, LIU Y, et al. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment [J].Mater. Res. Bull., 2011, 46(1): 147-151.
CHEN B B, LIU Z X, DENG W C, et al. A large-scale synthesis of photoluminescent carbon quantum dots: a self-exothermic reaction driving the formation of the nanocrystalline core at room temperature [J].Green Chem., 2016, 18(19): 5127-5132.
CHEN B B, LI R S, LIU M L, et al. Self-exothermic reaction prompted synthesis of single-layered graphene quantum dots at room temperature [J].Chem. Commun., 2017, 53(36): 4958-4961.
QU D, SUN Z C. The formation mechanism and fluorophores of carbon dots synthesized via a bottom-up route [J].Mater. Chem. Front., 2020, 4(2): 400-420.
MIAO X, QU D, YANG D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization [J].Adv. Mater., 2018, 30(1): 1704740.
WANG X, CAO L, YANG S T, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles [J].Angew. Chem. Int. Ed., 2010, 49(31): 5310-5314.
JIANG L, DING H Z, LU S Y, et al. Photoactivated fluorescence enhancement in F, N-doped carbon dots with piezochromic behavior [J].Angew. Chem. Int. Ed., 2020, 59(25): 9986-9991.
AI L, YANG Y S, WANG B Y, et al. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives [J].Sci. Bull., 2021, 66(8): 839-856.
YU J J, LIU C, YUAN K, et al. Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions [J].Nanomaterials, 2018, 8(4): 233-1-12.
LIU J J, LI R, YANG B. Carbon dots: a new type of carbon-based nanomaterial with wide applications [J].ACS Cent. Sci., 2020, 6(12): 2179-2195.
BÉZIAU A, BAUDRON S A, RASOLOARISON D, et al. Rigid yet flexible heteroleptic Co(iii) dipyrrin complexes for the construction of heterometallic 1- and 2-d coordination polymers [J].CrystEngComm, 2014, 16(23): 4973-4980.
ZHANG M R, SU R G, ZHONG J, et al. Red/orange dual-emissive carbon dots for PH sensing and cell imaging [J].Nano Res., 2019, 12(4): 815-821.
ZUO G C, XIE A M, LI J J, et al. Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag+ detection [J].J. Phys. Chem. C, 2017, 121(47): 26558-26565.
LI H X, YAN X, QIAO S P, et al. Yellow-emissive carbon dot-based optical sensing platforms: cell imaging and analytical applications for biocatalytic reactions [J].ACS Appl. Mater. Interfaces, 2018, 10(9): 7737-7744.
LIU K K, SONG S Y, SUI L Z, et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence [J].Adv. Sci., 2019, 6(17): 1900766-1-10.
LI D, JING P T, SUN L H, et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots [J].Adv. Mater., 2018, 30(13): 1705913-1-8.
MIAO X, YAN X L, QU D, et al. Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics [J].ACS Appl. Mater. Interfaces, 2017, 9(22): 18549-18556.
LI M, GOU H L, AL-OGAIDI I, et al. Nanostructured sensors for detection of heavy metals: a review [J].ACS Sustainable Chem. Eng., 2013, 1(7): 713-723.
CUI X, ZHU L, WU J, et al. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (Ⅱ) detection [J].Biosens. Bioelectron., 2015, 63: 506-512.
LIU X J, ZHANG N, BING T, et al. Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+ [J].Anal. Chem., 2014, 86(5): 2289-2296.
SONG Y, ZHU C Z, SONG J H, et al. Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells [J].ACS Appl. Mater. Interfaces, 2017, 9(8): 7399-7405.
LIU Y L, ZHOU Q X, YUAN Y Y, et al. Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate [J].Carbon, 2017, 115: 550-560.
NIU W J, SHAN D, ZHU R H, et al. Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing Cadmium (Ⅱ) ions and L-ascorbic acid [J].Carbon, 2016, 96: 1034-1042.
ZHANG Z M, SHI Y P, PAN Y, et al. Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+ [J].J. Mater. Chem. B, 2014, 2(31): 5020-5027.
LIN Z, XUE W, CHEN H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing [J].Anal. Chem., 2011, 83(21): 8245-8251.
TANG X D, YU H M, BUI B, et al. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples [J].Bioact. Mater., 2021, 6(6): 1541-1554.
SHI L Y, ZHOU G H, XIANG X, et al. Nitrogen-sulfur co-doped pH-insensitive fluorescent carbon dots for high sensitive and selective hypochlorite detection [J].Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2020, 242: 118721.
ZHAO Z M, GUO Y Z, ZHANG T, et al. Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink [J].Int. J. Biol. Macromol., 2020, 164: 4289-4298.
SHEN C L, ZHENG G S, WU M Y, et al. Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose [J].Nanophotonics, 2020, 9(11): 3597-3604.
YANG Y Z, XIAO N, LIU S G, et al. pH-induced aggregation of hydrophilic carbon dots for fluorescence detection of acidic amino acid and intracellular pH imaging [J].Mater. Sci. Eng.:C, 2020, 108: 110401.
GODAVARTHI S, KUMAR K M, VÉLEZ E V, et al. Nitrogen doped carbon dots derived from Sargassum fluitans as fluorophore for DNA detection [J].J. Photoch. Photobio. B:Biol., 2017, 172: 36-41.
MA Z, ZHANG Y L, WANG L, et al. Bioinspired photoelectric conversion system based on carbon-quantum-dot-doped dye-semiconductor complex [J].ACS Appl. Mater. Interfaces, 2013, 5(11): 5080-5084.
FERRER-RUIZ A, SCHARL T, RODRÍGUEZ-PÉREZ L, et al. Assessing the photoinduced electron-donating behavior of carbon nanodots in nanoconjugates [J].J. Am. Chem. Soc., 2020, 142(48): 20324-20328.
QU D, ZHENG M, DU P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts [J].Nanoscale, 2013, 5(24): 12272-12277.
YANG D X, QU D, MIAO X, et al. TiO2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H2 production [J].Rare Metals, 2019, 38(5): 404-412.
ZHANG X H, LIN L, QU D, et al. Corrigendum to “Boosting visible-light driven solar-fuel production over g-C3N4/tetra(4-carboxyphenyl)porphyrin iron(Ⅲ) chloride hybrid photocatalyst via incorporation with carbon dots” [J].Appl. Catal. B:Environ., 2020, 270: 118759.
LIU J, LIU Y, LIU N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway [J].Science, 2015, 347(6225): 970-974.
QU D, LIU J, MIAO X, et al. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst [J].Appl. Catal. B:Environ., 2018, 227: 418-424.
WANG Y, LIU X, HAN X Y, et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water [J].Nat. Commun., 2020, 11(1): 2531.
JIANG W S, ZHAO Y J, ZONG X P, et al. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride [J].Angew. Chem. Int. Ed., 2021, 60(11): 6124-6129.
YANG S X, DU R Q, YU Y H, et al. One-step electrodeposition of carbon quantum dots and transition metal ions for N-doped carbon coupled with NiFe oxide clusters: a high-performance electrocatalyst for oxygen evolution [J].Nano Energy, 2020, 77: 105057.
ZHANG P, BIN D, WEI J S, et al. Efficient oxygen electrocatalyst for Zn-air batteries: carbon dots and Co9S8 nanoparticles in a N, S-codoped carbon matrix [J].ACS Appl. Mater. Interfaces, 2019, 11(15): 14085-14094.
CHEN W W, QIN Z J, MCELHENNY B, et al. The effect of carbon quantum dots on the electrocatalytic hydrogen evolution reaction of manganese-nickel phosphide nanosheets [J].J. Mater. Chem. A, 2019, 7(37): 21488-21495.
DONALDSON L. Autofluorescence in plants [J].Molecules, 2020, 25(10): 2393-1-20.
DENG Y H, ZHAO D X, CHEN X, et al. Long lifetime pure organic phosphorescence based on water soluble carbon dots [J].Chem. Commun., 2013, 49(51): 5751-5753.
ZHANG H Y, LIU K K, LIU J C, et al. Carbon dots-in-zeolite via in-situ solvent-free thermal crystallization: achieving high-efficiency and ultralong afterglow dual emission [J].CCS Chem., 2020, 2(3): 118-127.
LI W, WU S S, XU X K, et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature [J].Chem. Mater., 2019, 31(23): 9887-9894.
LIANG Y C, GOU S S, LIU K K, et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution [J].Nano Today, 2020, 34: 100900.
ZHU X K, LI A L, WU D, et al. Tunable large-area phase reversion in chemical vapor deposited few-layer MoTe2 films [J].J. Mater. Chem. C, 2019, 7(34): 10598-10604.
ZHEN X, TAO Y, AN Z F, et al. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging [J].Adv. Mater., 2017, 29(33): 1606665-1-7.
JIANG K, ZHANG L, LU J F, et al. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting [J].Angew. Chem. Int. Ed., 2016, 55(25): 7231-7235.
YANG J X, TANG Q W, MENG Q, et al. Photoelectric conversion beyond sunny days: all-weather carbon quantum dot solar cells [J].J. Mater. Chem. A, 2017, 5(5): 2143-2150.
GUO R T, LI L, WANG B W, et al. Functionalized carbon dots for advanced batteries [J].Energy Storage Mater., 2021, 37: 8-39.
XIE F, XU Z, JENSEN A C S, et al. Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency [J].J. Mater. Chem. A, 2019, 7(48): 27567-27575.
LIU B, CHU B, WANG Y L, et al. Carbon dioxide derived carbonized polymer dots for multicolor light-emitting diodes [J].Green Chem., 2021, 23(1): 422-429.
QU D, YANG D X, SUN Y K, et al. White emissive carbon dots actuated by the H-/J-aggregates and förster resonance energy transfer [J].J. Phys. Chem. Lett., 2019, 10(14): 3849-3857.
YUAN F L, WANG Y K, SHARMA G, et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination [J].Nat. Photonics, 2020, 14(3): 171-176.
WANG Z F, LIU Y, ZHEN S J, et al. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes [J].Adv. Sci., 2020, 7(4): 1902688-1-7.
DONG X Y, NIU X Q, ZHANG Z Y, et al. Red fluorescent carbon dot powder for accurate latent fingerprint identification using an artificial intelligence program [J].ACS Appl. Mater. Interfaces, 2020, 12(26): 29549-29555.
QU D, MIAO X, WANG X T, et al. Se & N co-doped carbon dots for high-performance fluorescence imaging agent of angiography [J].J. Mater. Chem. B, 2017, 5(25): 4988-4992.
CHEN S, SUN T T, ZHENG M, et al. Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy [J].Adv. Funct. Mater., 2020, 30(43): 2004680.
LI B L, ZHAO S J, HUANG L, et al. Recent advances and prospects of carbon dots in phototherapy [J].Chem. Eng. J., 2021, 408: 127245.
GENG X, SUN Y Q, GUO Y F, et al. Fluorescent carbon dots for in situ monitoring of lysosomal ATP levels [J].Anal. Chem., 2020, 92(11): 7940-7946.
ZHENG M, LIU S, LI J, et al. Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine [J].Adv. Mater., 2014, 26(21): 3554-3560.
HOU L, CHEN D D, WANG R T, et al. Transformable honeycomb-like nanoassemblies of carbon dots for regulated multisite delivery and enhanced antitumor chemoimmunotherapy [J].Angew. Chem. Int. Ed., 2021, 60(12): 6581-6592.
0
浏览量
480
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构