浏览全部资源
扫码关注微信
福州大学 物理与信息工程学院,平板显示技术国家地方联合工程实验室,福建 福州 350108
[ "郑春波(1996-),男,浙江宁波人,硕士研究生,2018年于绍兴文理学院获得学士学位,主要从事喷墨打印钙钛矿发光二极管的研究。E-mail: m18268557593@163.com" ]
[ "李福山(1978-),男,福建莆田人,博士,研究员,博士研究生导师,2005年于北京大学获得博士学位,主要从事纳米光电材料与器件的研究。E-mail: fsli@fzu.edu.cn", "青年编委介绍:", "李福山,《发光学报》第一届青年编委,博士,研究员,博士研究生导师,英国工程技术学会会士(IET Fellow),福 州大学量子点研究院院长,量子点发光与显示福建省高校重点实验室主任。2005年于北京大学获得理学博士学位。主要研究领域:纳米光电材料与器件。主要学术业绩:在量子点发光与显示技术方面取得了一系列成果,获得了国家重点研发计划、国家自然科学基金联合重点支持项目等立项支持,总经费超过1 000万元,发表学术专著1部,以第一/通讯作者身份在Nature Communications, Advanced Functional Materials, ACS Nano, Nano Energy等权威刊物发表论文100余篇,总引用次数2 200余次。获得中国发明专利授权20件。获得英国物理学会出版集团颁发的Top Cited Author Award。2016年获得福建省青年五四奖章。2019年当选英国工程技术学会会士。2019年获得福建省自然科学三等奖(第一完成人)。2019年指导博士学位论文入选中国电子教育学会优秀博士论文。" ]
纸质出版日期:2021-05-01,
收稿日期:2021-02-09,
修回日期:2021-02-23,
移动端阅览
郑春波, 郑鑫, 冯晨, 等. 基于LiF修饰层的喷墨打印钙钛矿发光二极管[J]. 发光学报, 2021,42(5):565-574.
CHUN-BO ZHENG, XIN ZHENG, CHEN FENG, et al. Inkjet Printed Perovskite Light-emitting Diode Based on LiF Modification Layer. [J]. Chinese journal of luminescence, 2021, 42(5): 565-574.
郑春波, 郑鑫, 冯晨, 等. 基于LiF修饰层的喷墨打印钙钛矿发光二极管[J]. 发光学报, 2021,42(5):565-574. DOI: 10.37188/CJL.20210058.
CHUN-BO ZHENG, XIN ZHENG, CHEN FENG, et al. Inkjet Printed Perovskite Light-emitting Diode Based on LiF Modification Layer. [J]. Chinese journal of luminescence, 2021, 42(5): 565-574. DOI: 10.37188/CJL.20210058.
金属卤化物钙钛矿材料由于具有高光致发光量子产率、高色纯度、带隙可调等优良光学性能,作为发光材料广泛用于制备钙钛矿电致发光二极管(PeLEDs)。虽然已经取得了较好的研究进展,但是其大面积商业化的进程还比较缓慢,尚需进一步研究。为了实现钙钛矿薄膜发光二极管的大面积制备,本文使用喷墨打印技术,研究了不同基板结构对于钙钛矿前驱液的铺展与结晶成膜的影响及器件性能的比较,引入了具有空穴阻挡能力的无机小分子材料氟化锂(LiF)作为缓冲层沉积于空穴传输层TFB上,获得了像素化的均匀分布的钙钛矿薄膜,从而得到发光均匀的最高亮度为4 861 cd/m
2
且最大电流效率为5.41 cd/A的印刷钙钛矿发光二极管。研究表明
LiF修饰层对于空穴的注入具有阻挡作用,并且有效阻止了钙钛矿发光层与TFB接触后所导致的激子猝灭现象。
Metal halide perovskite materials are widely used as luminescent materials to prepare perovskite light-emitting diodes(PeLEDs) due to their outstanding optical properties such as high photoluminescence quantum yield
high color purity
and adjustable band gap. Although good research progress has been made
its large-scale preparation for commercialization is still very slow
and further efforts are needed. In order to realize the large-area preparation of perovskite thin film light-emitting diodes
this paper uses inkjet printing technology to study the influence of different substrate structures on the spreading and crystallization of the perovskite precursor liquid and the comparison of device performance. Then a kind of inorganic small molecule material lithium fluoride(LiF) with hole blocking ability was introduced as a buffer layer and deposited on TFB to obtain a pixelated and evenly distributed perovskite film
so that the highest brightness with uniform light emission was obtained. And we get a printed perovskite light-emitting diode with 4 861cd/m
2
and a maximum current efficiency of 5.41 cd/A. The studies showed that the LiF buffer layer has a certain blocking effect on the injection of holes
and effectively prevents the exciton quenching caused by the contact between the perovskite luminescent layer and the TFB after plasma treatment.
喷墨打印钙钛矿发光二极管电致发光基板修饰
inkjet printingperovskite light-emitting diodeselectroluminescencesubstrate modification
ZHANG F, ZHONG H Z, CHEN C, et al.. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br,I,Cl) quantum dots: potential alternatives for display technology[J].ACS Nano, 2015, 9(4):4533-4542.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites(CsPbX3,X=Cl,Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Lett., 2015, 15(6):3692-3696.
SICHERT J A, TONG Y, MUTZ N, et al.. Quantum size effect in organometal halide perovskite nanoplatelets[J].Nano Lett., 2015, 15(10):6521-6527.
GONZALEZ-CARRERO S, GALIAN R E, PÉREZ-PRIETO J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles[J].J. Mater. Chem. A, 2015, 3(17):9187-9193.
AKKERMAN Q A, D'INNOCENZO V, ACCORNERO S, et al.. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions[J].J. Am. Chem. Soc., 2015, 137(32):10276-10281.
SCHMIDT L C, PERTEGAS A, GONZALEZ-CARRERO S, et al.. Nontemplate synthesis of CH3NH3PbBr3 perovskite nano-particles[J].J. Am. Chem. Soc., 2014, 136(3):850-853.
HUANG H, SUSHA A S, KERSHAW S V, et al.. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature[J].Adv. Sci., 2015, 2(9):1500194-1-5.
PRADHAN N. Tips and twists in making high photoluminescence quantum yield perovskite nanocrystals[J].ACS Energy Lett., 2019, 4(7):1634-1638.
郑悦婷, 郑鑫, 胡海龙, 等. 溶液法制备CsPbBr3钙钛矿薄膜微观结构控制与发光特性[J].发光学报, 2020, 41(7):775-781.
ZHENG Y T, ZHENG X, HU H L, et al.. Microstructure and luminescence characteristics of CsPbBr3 perovskite films by solution process[J].Chin. J. Lumin., 2020, 41(7):775-781. (in Chinese)
NEDELCU G, PROTESESCU L, YAKUNIN S, et al.. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3,X=Cl,Br,I)[J].Nano Lett., 2015, 15(8):5635-5640.
LI Z C, CHEN Z M, YANG Y C, et al.. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%[J].Nat. Commun., 2019, 10(1):1027-1-10.
KIM Y H, KIM J S, LEE T W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes[J].Adv. Mater., 2019, 31(47):1804595-1-28.
LI G P, WANG H, ZHANG T, et al.. Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes[J].Adv. Funct. Mater., 2016, 26(46):8478-8486.
QUAN L N, GARCÍA DE ARQUER F P, SABATINI R P, et al.. Perovskites for light emission[J].Adv. Mater., 2018, 30(45):1801996-1-19.
TAN Z K, MOGHADDAM R S, LAI M L, et al.. Bright light-emitting diodes based on organometal halide perovskite[J].Nat. Nanotechnol., 2014, 9(9):687-692.
BALL J M, LEE M M, HEY A, et al.. Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J].Energy Environ. Sci., 2013, 6(6):1739-1743.
GRINBERG I, WEST D V, TORRES M, et al.. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials[J].Nature, 2013, 503(7477):509-512.
JEON N J, NOH J H, KIM Y C, et al.. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J].Nat. Mater., 2014, 13(9):897-903.
LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J].Nature, 2013, 501(7467):395-398.
PARK N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J].J. Phys. Chem. Lett., 2013, 4(15):2423-2429.
CHO H, JEONG S H, PARK M H, et al.. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J].Science, 2015, 350(6265):1222-1225.
MILOT R L, EPERON G E, SNAITH H J, et al.. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films[J].Adv. Funct. Mater., 2015, 25(39):6218-6227.
STRANKS S D, EPERON G E, GRANCINI G, et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J].Science, 2013, 342(6156):341-344.
LIN K B, XING J, QUAN L N, et al.. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J].Nature, 2018, 562(7726):245-248.
FANG Z B, CHEN W J, SHI Y L, et al.. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%[J].Adv. Funct. Mater., 2020, 30(12):1909754-1-9.
DONG Y T, WANG Y K, YUAN F L, et al.. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots[J].Nat. Nanotechnol., 2020, 15(8):668-674.
KARLSSON M, YI Z Y, REICHERT S, et al.. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J].Nat. Commun., 2021, 12(1):361-1-32.
许鸿源, 张剑华, 李福山. CdTe∶Eu量子点的合成及其光学性能研究[J].发光学报, 2016, 37(3):305-309.
XU H Y, ZHANG J H, LI F S. Synthesis and optical properties of CdTe∶Eu quantum dots[J].Chin. J. Lumin., 2016, 37(3):305-309. (in Chinese)
CALVERT P. Inkjet printing for materials and devices[J].Chem. Mater., 2001, 13(10):3299-3305.
DE GANS B J, DUINEVELD P C, SCHUBERT U S. Inkjet printing of polymers:state of the art and future developments[J].Adv. Mater., 2004, 16(3):203-213.
DERBY B. Inkjet printing of functional and structural materials:fluid property requirements, feature stability, and resolution[J].Annu. Rev. Mater. Sci., 2010, 40:395-414.
LEE H H, CHOU K S, HUANG K C. Inkjet printing of nanosized silver colloids[J].Nanotechnology, 2005, 16(10):2436-2441.
SHIMODA T, MORII K, SEKI S, et al.. Inkjet printing of light-emitting polymer displays[J].MRS Bull., 2003, 28(11):821-827.
SINGH M, HAVERINEN H M, DHAGAT P, et al.. Inkjet printing-process and its applications[J].Adv. Mater., 2010, 22(6):673-685.
SOLTMAN D, SUBRAMANIAN V. Inkjet-printed line morphologies and temperature control of the coffee ring effect[J].Langmuir, 2008, 24(5):2224-2231.
WANG J Z, ZHENG Z H, LI H W, et al.. Dewetting of conducting polymer inkjet droplets on patterned surfaces[J].Nat. Mater., 2004, 3(3):171-176.
KUANG M X, WANG J X, BAO B, et al.. Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sliding three phase contact line[J].Adv. Opt. Mater., 2014, 2(1):34-38.
GU Z K, WANG K, LI H Z, et al.. Direct-writing multifunctional perovskite single crystal arrays by inkjet printing[J].Small, 2017, 13(8):1603217-1-7.
GU Z K, HUANG Z D, HU X T, et al.. In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices[J].ACS Appl. Mater. Interfaces, 2020, 12(19):22157-22162.
GU Z K, HUANG Z D, LI C, et al.. A general printing approach for scalable growth of perovskite single-crystal films[J].Sci. Adv., 2018, 4(6):eaat2390-1-8.
GU Z K, ZHOU Z H, HUANG Z D, et al.. Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics[J].Adv. Mater., 2020, 32(17):1908006.
GAO A J, YAN J, WANG Z J, et al.. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing[J].Nanoscale, 2020, 12(4):2569-2577.
GAO Y S, HUANG C, HAO C L, et al.. Lead halide perovskite nanostructures for dynamic color display[J].ACS Nano, 2018, 12(9):8847-8854.
LIU Y, LI F S, QIU L C, et al.. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing[J].ACS Nano, 2019, 13(2):2042-2049.
SHI L F, MENG L H, JIANG F, et al.. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns[J].Adv. Funct. Mater., 2019, 29(37):1903648-1-6.
HWANG K, JUNG Y S, HEO Y J, et al.. Toward large scale roll-to-roll production of fully printed perovskite solar cells[J].Adv. Mater., 2015, 27(7):1241-1247.
LI P W, LIANG C, BAO B, et al.. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells[J].Nano Energy, 2018, 46:203-211.
LIANG C, LI P W, GU H, et al.. One-step inkjet printed perovskite in air for efficient light harvesting[J].Sol. RRL, 2018, 2(2):1700217-1-9.
MATHIES F, ABZIEHER T, HOCHSTUHL A, et al.. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells[J].J. Mater. Chem. A, 2016, 4(48):19207-19213.
LI D Y, WANG J J, LI M Z, et al.. Inkjet printing matrix perovskite quantum dot light-emitting devices[J].Adv. Mater. Technol., 2020, 5(6):2000099.
YUK H, LU B Y, LIN S, et al.. 3D printing of conducting polymers[J].Nat. Commun., 2020, 11(1):1604-1-8.
BAN M Y, ZOU Y T, RIVETT J P H, et al.. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring[J].Nat. Commun., 2018, 9(1):3892-1-10.
BAO C X, YANG J, BAI S, et al.. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications[J].Adv. Mater., 2018, 30(38):1803422-1-8.
CHENG G Q, LIU Y, CHEN T, et al.. Efficient all-inorganic perovskite light-emitting diodes with improved operation stability[J].ACS Appl. Mater. Interfaces, 2020, 12(15):18084-18090.
PARK M H, PARK J, LEE J, et al.. Efficient perovskite light-emitting diodes using polycrystalline core-shell-mimicked nanograins[J].Adv. Funct. Mater., 2019, 29(22):1902017.
TAN Y S, LI R Y, XU H, et al.. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display[J].Adv. Funct. Mater., 2019, 29(23):1900730-1-9.
YUAN S, WANG Z K, XIAO L X, et al.. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes[J].Adv. Mater., 2019, 31(44):1904319-1-9.
ZOU C, LIU Y, GINGER D S, et al.. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes[J].ACS Nano, 2020, 14(5):6076-6086.
0
浏览量
383
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构