浏览全部资源
扫码关注微信
华侨大学 材料科学与工程学院,物理化学研究所,福建省光电功能材料重点实验室,环境友好功能材料教育部工程研究中心,福建 厦门 361021
[ "邹宇(2000-),男,四川成都人,在读本科生,主要从事钙钛矿太阳能电池的研究。E-mail: 1814111041@stu.hqu.edu.cn" ]
[ "孙伟海(1988-),男,福建龙岩人,博士,讲师,2015年于北京大学获得博士学位,主要从事新型太阳能电池(钙钛矿太阳能电池和有机聚合物太阳能电池)方面的研究。E-mail: sunweihai@hqu.edu.cn" ]
纸质出版日期:2021-05-01,
收稿日期:2021-01-30,
修回日期:2021-02-13,
扫 描 看 全 文
邹宇, 李昭, 陈衡慧, 等. NaTFSI界面修饰对平面TiO2基钙钛矿太阳能电池的影响[J]. 发光学报, 2021,42(5):682-690.
Yu ZOU, Zhao LI, Heng-hui CHEN, et al. Effect of Interfacial Modification for TiO2-based Planar Perovskite Solar Cells Using NaTFSI[J]. Chinese Journal of Luminescence, 2021,42(5):682-690.
邹宇, 李昭, 陈衡慧, 等. NaTFSI界面修饰对平面TiO2基钙钛矿太阳能电池的影响[J]. 发光学报, 2021,42(5):682-690. DOI: 10.37188/CJL.20210045.
Yu ZOU, Zhao LI, Heng-hui CHEN, et al. Effect of Interfacial Modification for TiO2-based Planar Perovskite Solar Cells Using NaTFSI[J]. Chinese Journal of Luminescence, 2021,42(5):682-690. DOI: 10.37188/CJL.20210045.
在钙钛矿太阳能电池(PSCs)中,光吸收钙钛矿层夹在电子传输层(ETL)和空穴传输层(HTL)之间。钙钛矿层与电荷传输层之间的界面复合被认为是诱发器件电压损失的主要原因。通过对电荷传输层的修饰,不仅可以提高其电荷传输性能,而且还可以钝化界面缺陷,从而提高电池的光电转换效率(PCE)和稳定性。通过在平面二氧化钛层上引入一层双(三氟甲基磺酰基)亚胺钠(NaTFSI)来修饰二氧化钛ETL和钙钛矿之间的界面。实验结果显示,利用NaTFSI界面层修饰二氧化钛ETL不仅可以增大上层钙钛矿晶粒尺寸大小,减少晶界从而降低界面载流子复合;而且NaTFSI修饰后的ETL导电性增强,功函数降低。最后,通过优化NaTFSI界面层,实现了器件效率从18.62%至19.83%的显著提升。
A typical perovskite solar cell(PSC) structure involves the light absorbing perovskite layer sandwiched between the electron-transport layer(ETL) and the hole-transport layer(HTL). The charge recombination at the interface between the perovskite layer and the charge-transport layer is considered to be the major cause of the voltage loss of the device. With the modification of the charge-transport layer
it can not only improve its charge transport properties
but also passivate the interface defects
thus enhancing the power conversion efficiency(PCE) and stability of the PSCs. The interface between ETL and perovskite is modified by introducing Na [(CF
3
SO
2
)
2
N] (NaTFSI) on the planar TiO
2
layer. Experimental results show that the ETL modified with the NaTFSI interface layer could not only increase the size of the perovskite grains
but also reduce the grain boundaries and the interface carrier recombination. In addition
the ETL modified with the Na-TFSI can also enhance the conductivity of the ETL and decrease its work function. Finally
we achieved a significant increase in device efficiency from 18.62% to 19.83% by optimizing the NaTFSI interface layer.
钙钛矿太阳能电池TiO2NaTFSI界面修饰光电转换效率
perovskite solar cellsTiO2NaTFSIinterface modificationphotoelectric conversion efficiency
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].J. Am. Chem. Soc., 2009, 131(17):6050-6051.
NREL. Best research-cell efficiency chart[EB/OL]. [2021-01-19].https://www.nrel.gov/pv/cell-efficiency.htmlhttps://www.nrel.gov/pv/cell-efficiency.html.
LEE M M, TEUSCHER J, MIYASAKA T, et al.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science, 2012, 338(6107):643-647.
EPERON G E, STRANKS S D, MENELAOU C, et al.. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J].Energy Environ. Sci., 2014, 7(3):982-988.
HAO F, STOUMPOS C C, CAO D H, et al.. Lead-free solid-state organic-inorganic halide perovskite solar cells[J].Nat. Photonics, 2014, 8(6):489-494.
NOEL N K, STRANKS S D, ABATE A, et al.. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J].Energy Environ. Sci., 2014, 7(9):3061-3068.
NOH J H, IM S H, HEO J H, et al.. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J].Nano Lett., 2013, 13(4):1764-1769.
SUN S Y, SALIM T, MATHEWS N, et al.. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J].Energy Environ. Sci., 2014, 7(1):399-407.
XING G C, MATHEWS N, SUN S Y, et al.. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J].Science, 2013, 342(6156):344-347.
WU W Q, CHEN D H, CARUSO R A, et al.. Recent progress in hybrid perovskite solar cells based on n-type materials[J].J. Mater. Chem.:A, 2017, 5(21):10092-10109.
ZHOU Y, LI X, LIN H. To be higher and stronger-metal oxide electron transport materials for perovskite solar cells[J].Small, 2020, 16(15):1902579.
ZHOU H P, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J].Science, 2014, 345(6196):542-546.
LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J].Nature, 2013, 501(7467):395-398.
SINGH T, ÖZ S, SASINSKA A, et al.. Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers[J].Adv. Funct. Mater.,2018, 28(14):1706287-1-10.
YANG Y, LIU C, DING Y, et al.. Eliminating charge accumulation via interfacial dipole for efficient and stable perovskite solar cells[J].ACS Appl. Mater. Interfaces, 2019, 11(38):34964-34972.
UNGER E L, HOKE E T, BAILIE C D, et al.. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells[J].Energy Environ. Sci., 2014, 7(11):3690-3698.
YANG Z C, BABU B H, WU S H, et al.. Review on practical interface engineering of perovskite solar cells:from efficiency to stability[J].Solar RRL, 2020, 4(2):1900257.
YANG D, ZHOU X, YANG R X, et al.. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells[J].Energy Environ. Sci., 2016, 9(10):3071-3078.
ZHU L F, XU Y Z, SHI J J, et al.. Efficient perovskite solar cells via simple interfacial modification toward a mesoporous TiO2 electron transportation layer[J].RSC Adv., 2016, 6(85):82282-82288.
TAO C, NEUTZNER S, COLELLA L, et al.. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells[J].Energy Environ. Sci., 2015, 8(8):2365-2370.
GIORDANO F, ABATE A, BAENA J P C, et al.. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells[J].Natmmun., 2016, 7(1):10379-1-6.
TU Y G, WU J H, ZHENG M, et al.. TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%[J].Nanoscale, 2015, 7(48):20539-20546.
ZHANG Y N, LI B, FU L, et al.. MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells[J].Electrochim. Acta, 2020, 330:135280.
LIU X P, WU J H, GUO Q Y, et al.. Pyrrole:an additive for improving the efficiency and stability of perovskite solar cells[J].J. Mater. Chem. A, 2019, 7(19):11764-11770.
LEE J W, BAE S H, HSIEH Y T, et al.. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells[J].Chem, 2017, 3(2):290-302.
ZHANG X Z, WU T Y, XU X X, et al.. Ligand-exchange TiO2 nanocrystals induced formation of high-quality electron transporting layers at low temperature for efficient planar perovskite solar cells[J].Sol. Energy Mater. Sol. Cells, 2018, 178:65-73.
ZHU Q J, WU J H, YUAN P Q, et al.. Ammonium fluoride interface modification for high-performance and long-term stable perovskite solar cells[J].Energy Technol., 2020, 8(1):1901017.
ZHOU W R, LI D, XIAO Z G, et al.. Zwitterion coordination induced highly orientational order of CH3NH3PbI3 perovskite film delivers a high open circuit voltage exceeding 1.2 V[J].Adv. Funct. Mater., 2019, 29(23):1901026.
LAI H T, KAN B, LIU T T, et al.. Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J].J. Am. Chem. Soc., 2018, 140(37):11639-11646.
0
浏览量
79
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构