浏览全部资源
扫码关注微信
1.宁波大学 信息科学与工程学院,浙江 宁波 315211
2.南京大学 固体微结构物理国家重点实验室,江苏 南京 210093
[ "顾港伟(1997-),男,浙江绍兴人,硕士研究生,2019年于南京理工大学泰州科技学院获得学士学位,主要从事微纳光电子器件的研究。E-mail: 1911082176@nbu.edu.cn" ]
[ "张晓伟(1987-),男,河北石家庄人,博士,副教授,2016年于南京大学获得博士学位,主要从事稀土掺杂硅基薄膜发光材料与光电子器件方面的研究。E-mail: zhangxiaowei@nbu.edu.cn" ]
纸质出版日期:2021-05-01,
收稿日期:2021-01-13,
修回日期:2021-01-31,
扫 描 看 全 文
顾港伟, 郑子达, 张鑫, 等. 基于CsPbBr3纳米晶掺杂硫醇-烯聚合物的荧光太阳集光器制备及集光性能[J]. 发光学报, 2021,42(5):724-732.
Gang-wei GU, Zi-da ZHENG, Xin ZHANG, et al. Fabrication and Optical Efficiency of CsPbBr3 Nanocrystals and Thiol-ene Polymer-based Luminescent Solar Concentrator[J]. Chinese Journal of Luminescence, 2021,42(5):724-732.
顾港伟, 郑子达, 张鑫, 等. 基于CsPbBr3纳米晶掺杂硫醇-烯聚合物的荧光太阳集光器制备及集光性能[J]. 发光学报, 2021,42(5):724-732. DOI: 10.37188/CJL.20210025.
Gang-wei GU, Zi-da ZHENG, Xin ZHANG, et al. Fabrication and Optical Efficiency of CsPbBr3 Nanocrystals and Thiol-ene Polymer-based Luminescent Solar Concentrator[J]. Chinese Journal of Luminescence, 2021,42(5):724-732. DOI: 10.37188/CJL.20210025.
荧光太阳集光器在光伏建筑一体化方面的潜在应用受到了广泛关注。本文采用CsPbBr
3
纳米晶作为集光器的发光中心,采用硫醇-烯聚合物作为集光器的透明光波导基质。通过荧光发射谱、吸收谱以及荧光寿命谱等对集光性能进行研究,发现将CsPbBr
3
纳米晶掺入硫醇-烯聚合物后,发光峰位蓝移了11 nm、半高宽展宽了20.4 nm,这可归因于硫醇-烯聚合物基质的介电约束效应。同时,硫醇-烯聚合物基质大幅提高了CsPbBr
3
纳米晶的发光稳定性。当CsPbBr
3
纳米晶在硫醇-烯聚合物基质中的掺杂浓度为5.6%时,荧光太阳集光器的集光效率可达8.9%。采用商用的多晶硅太阳能电池耦合在荧光太阳集光器的边缘,在标准AM1.5的太阳光照条件下,器件开路电压为0.47 V,短路电流密度为7.14 mA/cm
2
,填充因子为24.01%,光电转换效率为2.30%。
Luminescent solar concentrator(LSC) attracts extensive attention due to the potential application in the building integrated photovoltaics. In this work
the CsPbBr
3
nanocrystal is chosen as the luminescent center and the thiol-ene polymer is used for the transparent optical waveguide matrix of LSC. The photoluminescence emission spectra
absorption spectra
and time-resolved emission spectra are performed to evaluate the optical efficiency
respectively. It is found that the emission peak blue-shifts by 11.0 nm and the full width at half maximum(FWHM) widens by 20.4 nm
which can be attributed to the dielectric screen effect of thiol-ene polymer matrix. Meanwhile
the introducing thiol-ene polymer matrix can greatly improve the photoluminescence emission stability of CsPbBr
3
nanocrystals. When the amount of CsPbBr
3
nanocrystals in the thiol-ene polymer matrix is 5.6%
the corresponding optical efficiency of LSC can reach 8.9%
which is higher than that of nanocrystals-based LSC reported in most previous studies. Further
the commercial polycrystalline silicon solar cell is designed to install in the edge of an LSC. Under the standard AM1.5 solar simulator
the device demonstrated the attractive attributes of open-circuit voltage of 0.47 V
short-circuit current density of 7.14 mA/cm
2
fill factor of 24.01%
and high power conversion efficiency up to 2.30%.
钙钛矿纳米晶硫醇-烯聚合物荧光太阳集光器光致发光集光效率
perovskite nanocrystalthiol-ene polymerluminescent solar concentratorphotoluminescenceoptical efficiency
JENA A K, KULKARNI A, MIYASAKA T. Halide perovskite photovoltaics: background, status, and future prospects[J].Chem. Rev., 2019, 119(5):3036-3103.
李红博, 尹坤. 基于量子点的荧光型太阳能聚光器[J].中国光学, 2017, 10(5):555-567.
LI H B, YIN K. Quantum dots based luminescent solar concentrator[J].Chin. Opt., 2017, 10(5):555-567. (in Chinese)
DEBIJE M G, VERBUNT P P C. Thirty years of luminescent solar concentrator research:solar energy for the built environment[J].Adv. Energy Mater., 2012, 2(1):12-35.
MEINARDI F, BRUNI F, BROVELLI S. Luminescent solar concentrators for building-integrated photovoltaics[J].Nat. Rev. Mater., 2017, 2(12):17072.
WEBER W H, LAMBE J. Luminescent greenhouse collector for solar radiation[J].Appl. Opt.,1976, 15(10):2299-2300.
RONCALI J. Luminescent solar collectors:quo vadis?[J].Adv. Energy Mater., 2020, 10(36):2001907.
MCKENNA B, EVANS R C. Towards efficient spectral converters through materials design for luminescent solar devices[J].Adv. Mater., 2017, 29(28):1606491.
ZHANG X W, CHEN R W, WANG P J, et al.. Investigation of energy transfer mechanisms in rare-earth doped amorphous silica films embedded with tin oxide nanocrystals[J].Opt. Express, 2019, 27(3):2783-2791.
RAMASAMY P, LIM D H, KIM B, et al.. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications[J].Chemmmun., 2016, 52(10):2067-2070.
LI S X, XU Y S, LI C L, et al.. Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year[J].Adv. Mater., 2020, 32(28):2001998.
SCHOLES G D, RUMBLES G. Excitons in nanoscale systems[J].Nat. Mater., 2006, 5(9):683-696.
ZHAO H F, HU Z J, WEI L F, et al.. Efficient and high-luminance perovskite light-emitting diodes based on CsPbBr3 nanocrystals synthesized from a dual-purpose organic lead source[J].Small, 2020, 16(46):2003939-1-7.
NOZIK A J, BEARD M C, LUTHER J M, et al.. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J].Chem. Rev., 2010, 110(11):6873-6890.
ZHANG J R, HODES G, JIN Z W, et al.. All-inorganic CsPbX3 perovskite solar cells:progress and prospects[J].Angew. Chem. Int. Ed., 2019, 58(44):15596-15618.
WU J J, TONG J Y, GAO Y, et al.. Efficient and stable thin-film luminescent solar concentrators enabled by near-infrared emission perovskite nanocrystals[J].Angew. Chem. Int. Ed., 2020, 59(20):7738-7742.
ZHAO H G, LIU G J, YOU S J, et al.. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators[J].Energy Environ. Sci., 2021, 14(1):396-406.
ZHAO H G, ZHOU Y F, BENETTI D, et al.. Perovskite quantum dots integrated in large-area luminescent solar concentrators[J].Nano Energy, 2017, 37:214-223.
WU K F, LI H B, KLIMOV V I. Tandem luminescent solar concentrators based on engineered quantum dots[J].Nat. Photonics, 2018, 12(2):105-110.
WEI M Y, DE ARQUER F P G, WALTERS G, et al.. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators[J].Nat. Energy, 2019, 4(3):197-205.
CAI T, WANG J Y, LI W H, et al.. Mn2+/Yb3+ codoped CsPbCl3 perovskite nanocrystals with triple-wavelength emission for luminescent solar concentrators[J].Adv. Sci., 2020, 7(18):2001317-1-9.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3,X=Cl,Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Lett., 2015, 15(6):3692-3696.
WORKU M, TIAN Y, ZHOU C K, et al.. Hollow metal halide perovskite nanocrystals with efficient blue emissions[J].Sci. Adv., 2020, 6(17):eaaz5961-1-8.
HU Y J, SHU J P, ZHANG X W, et al.. Encapsulation of colloid perovskite nanocrystals into solid polymer matrices:impact on electronic transition and photoluminescence[J].J. Lumin., 2020, 219:116938.
LIU X, LUO B, LIU J B, et al.. Eco-friendly quantum dots for liquid luminescent solar concentrators[J].J. Mater. Chem. A, 2020, 8(4):1787-1798.
CHANDRA S, MCCORMACK S J, KENNEDY M, et al.. Quantum dot solar concentrator:optical transportation and doping concentration optimization[J].Sol. Energy, 2015, 115:522-561.
FAYSAL A, NAHAR M T, NAWAR N, et al.. Investigation of optimal concentration of QDs on the performance of QD-based luminescent solar concentrators[C].Proceedings of 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 2020: 1616-1619.
束俊鹏, 汪鹏君, 张晓伟, 等. 基于钙钛矿量子点荧光太阳集光器的蒙特卡洛光子追踪模拟[J].发光学报, 2019, 40(4):484-490.
SHU J P, WANG P J, ZHANG X W, et al.. Monte-carlo ray-tracing simulations of perovskite quantum dots-based luminescent solar concentrators[J].Chin. J. Lumin., 2019, 40(4):484-490. (in Chinese)
GAN Z X, CHEN W J, YUAN L, et al.. External Stokes shift of perovskite nanocrystals enlarged by photon recycling[J].Appl. Phys. Lett., 2019, 114(1):011906-1-5.
GAN Z X, WEN X M, CHEN W J, et al.. The dominant energy transport pathway in halide perovskites:photon recycling or carrier diffusion?[J].Adv. Energy Mater., 2019, 9(20):1900185-1-11.
LI H B, WU K F, JIM J, et al.. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators[J].Nat. Energy, 2016, 1(12):16157.
MARININS A, SHAFAGH R Z, VAN DER WIJNGAART W, et al.. Light-converting polymer/Si nanocrystal composites with stable 60%-70% quantum efficiency and their glass laminates[J].ACS Appl. Mater. Interfaces, 2017, 9(36):30267-30272.
TONG J Y, LUO J W, SHI L, et al.. Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators[J].J. Mater. Chem. A, 2019, 7(9):4872-4880.
MEINARDI F, COLOMBO A, VELIZHANIN K, et al.. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix[J].Nat. Photonics, 2014, 8(5):392-399.
ZHAO H G, SUN R J, WANG Z F, et al.. Zero-dimensional perovskite nanocrystals for efficient luminescent solar concentrators[J].Adv. Funct. Mater., 2019, 29(30):1902262.
LUO X, DING T, LIU X, et al.. Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals[J].Nano Lett., 2019, 19(1):338-341.
MEINARDI F, EHRENBERG S, DHAMO L, et al.. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots[J].Nat. Photonics, 2017, 11(3):177-185.
0
浏览量
82
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构