浏览全部资源
扫码关注微信
太原理工大学 物理与光电工程学院,山西 太原 030024
[ "皮慧慧(1996-),女,安徽淮北人,硕士研究生,2018 年于潍坊学院获得学士学位,主要从事钙钛矿激光器方面的研究。E-mail: 1526723813@qq.com" ]
[ "李国辉(1984-),男,四川广元人,博士,副教授,硕士研究生导师,2011年于华东师范大学获得博士学位,主要从事微纳光子与光电子学领域(包括钙钛矿激光器、表面等离激元纳米器件、有机及钙钛矿光电探测器等)的研究。E-mail:liguohui@tyut.edu.cn" ]
[ "崔艳霞(1984-),女,山西吕梁人,博士,教授,博士研究生导师, 2011年于浙江大学获得博士学位,主要从事微纳光子与光电子学领域(包括表面等离激元纳米器件、有机及钙钛矿光电探测器及钙钛矿激光器等)的研究。E-mail: yanxiacui@gmail.com" ]
纸质出版日期:2021-05-01,
收稿日期:2021-01-01,
修回日期:2021-01-14,
扫 描 看 全 文
皮慧慧, 李国辉, 周博林, 等. 高效率钙钛矿量子点发光二极管研究进展[J]. 发光学报, 2021,42(5):650-667.
Hui-hui PI, Guo-hui LI, Bo-lin ZHOU, et al. Progress of High-efficiency Perovskite Quantum Dot Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2021,42(5):650-667.
皮慧慧, 李国辉, 周博林, 等. 高效率钙钛矿量子点发光二极管研究进展[J]. 发光学报, 2021,42(5):650-667. DOI: 10.37188/CJL.20200406.
Hui-hui PI, Guo-hui LI, Bo-lin ZHOU, et al. Progress of High-efficiency Perovskite Quantum Dot Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2021,42(5):650-667. DOI: 10.37188/CJL.20200406.
钙钛矿量子点具有光致发光量子产率高、发光光谱可调、光谱宽度窄、缺陷容忍度高以及独特的量子限域效应等优点,因此成为研制新型高效率发光二极管(LED)的热门材料。本文介绍了近几年基于钙钛矿量子点LED的研究最新进展。首先,介绍了钙钛矿量子点独特的晶体结构及钙钛矿发光器件的工作原理。然后,阐述了合成高光致发光量子产率(PLQY)量子点的方法及提高钙钛矿量子点LED效率的若干方法。最后,分析了当前钙钛矿量子点LED所面临的挑战如不稳定性及毒性,以及可应用在显示和照明方面的高效率LED所展现的前景。本综述为研制更高效率以及更加安全的钙钛矿量子点发光器件提供了有益的见解。
Perovskite quantum dots(QD
S
) are attracting materials for realizing new efficient light-emitting diode(LED) due to their merits such as high photoluminescence quantum yield
adjustable luminous spectrum
narrow spectral width
high defect tolerance and unique quantum confined effect. This paper introduces the latest progress in the research of perovskite-based quantum dot light-emitting diodes in recent years. Firstly
the unique crystal structure of perovskite quantum dot and the working principle of perovskite light-emitting device are introduced. Secondly
the method of synthesizing high photoluminescence quantum yield(PLQY) quantum dot and several methods of improving the LED efficiency of perovskite quantum dot are described. Finally
we analyzed the challenges faced by perovskite QD
S
such as instability
toxicity and the prospects for developing efficient LED for applications in display and lighting. This review is expected to provide helpful insights for promoting the efficiency and safety of QD
S
.
量子点钙钛矿发光二极管光致发光量子产率外量子效率电流效率
quantum dotsperovskite LEDphotoluminescence quantum yieldexternal quantum efficiencycurrent efficiency
BADE S G R, LI J Q, SHAN X, et al.. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes[J].ACS Nano, 2016, 10(2):1795-1801.
MADHUSOODHANAN S, SABBAR A, ATCITTY S, et al.. High-temperature optical characterization of GaN-based light-emitting diodes for future power electronic modules[J].Phys. Status Solidi A, 2020, 217(7):1900792.
郭伟玲, 邓杰, 王嘉露, 等. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管[J].物理学报, 2019, 68(24):247303-1-5.
GUO W L, DENG J, WANG J L, et al.. GaN-based light emitting diode with graphene/indium antimony oxide composite transparent electrode[J].Acta Phys. Sinica, 2019, 68(24):247303-1-5. (in Chinese)
LU Q, MARSHALL A, KRIER A. Metamorphic integration of GaInAsSb material on GaAs substrates for light emitting device applications[J].Materials, 2019, 12(11):1743.
HUANG H W, KAO C C, CHU J T, et al.. Investigation of GaN LED with Be-implanted Mg-doped GaN layer[J].Mater. Sci. Eng. B, 2004, 113(1):19-23.
XU H, WANG X C, LI Y, et al.. Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display[J].J. Phys. Chem. Lett., 2020, 11(9):3689-3698.
KIM M R, CHOI H W, BARK C W. Low-temperature thermally evaporated SnO2 based electron transporting layer for perovskite solar cells with annealing process[J].J. Nanosci. Nanotechnol., 2020, 20(9):5491-5497.
DUAN L S, CHEN Y, YUAN J, et al.. Dopant-free X-shaped D-A type hole-transporting materials for p-i-n perovskite solar cells[J].Dyes Pigments, 2020, 178:108334.
JUNG D H, OH Y J, NAM Y S, et al.. Effect of layer number on the properties of stable and flexible perovskite solar cells using two dimensional material[J].J. Alloys Compd., 2021, 850:156752.
GAO C, HU Z Y, YANG C, et al.. High-temperature induced iodide and bromide ions filling lattice for high efficient all-inorganic perovskite solar cells[J].J. Alloys Compd., 2020, 848:156247.
ZHANG M D, LU Q N, WANG C L, et al.. Improving the performance of ultra-flexible perovskite photodetectors through cation engineering[J].J. Phys. D:Appl. Phys., 2020, 53(23):235107.
OU Z H, YI Y S, HU Z T, et al.. Improvement of CsPbBr3 photodetector performance by tuning the morphology with PMMA additive[J].J. Alloys Compd., 2020, 821:153344.
张喜生, 晏春愉, 吴体辉, 等. CsPbBrI2量子点制备及其光探测器性能[J].光子学报, 2020, 49(1):0123002-1-9.
ZHANG X S, YAN C Y, WU T H, et al.. Fabrication of CsPbBrI2 quantum dots and its photodetector performance[J].Acta Photon. Sinica, 2020, 49(1):0123002-1-9. (in Chinese)
LI G H, GAO R, HAN Y, et al.. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects[J].Photonics Res., 2020, 8(12):1862-1874.
LI G H, CHE T, JI X Q, et al.. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite[J].Adv. Funct. Mater., 2019, 29(2):1805553.
DU Y, WANG X, SHEN D Y, et al.. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers[J].Chem. Eng. J., 2020, 401:126132.
YAN D D, SHI T C, ZANG Z G, et al.. Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere[J].Chem. Eng. J., 2020, 401:126066-1-10.
LIN W K, CHEN G X, LI E L, et al.. Improved stability and performance of all inorganic perovskite quantum dots synthesized directly with N-alkylmonoamine ligands for light-erasable transistor memory[J].Org. Electron., 2020, 86:105869.
CHEN C S, LI D, WU Y H, et al.. Flexible inorganic CsPbI3 perovskite nanocrystal-PMMA composite films with enhanced stability in air and water for white light-emitting diodes[J].Nanotechnology, 2020, 31(22):225602.
KIM D K, CHOI D, PARK M, et al.. Cesium lead bromide quantum dot light-emitting field-effect transistors[J].ACS Appl. Mater. Interfaces, 2020, 12(19):21944-21951.
KIM D H, KIM Y C, AN H J, et al.. Enhanced brightness of red light-emitting diodes based on CsPbBrxI3-x-PEOXA composite films[J].J. Alloys Compd., 2020, 845:156272.
SOLARI S F, KUMAR S, JAGIELSKI J, et al.. Monochromatic LEDs based on perovskite quantum dots:opportunities and challenges[J].J. Soc. Inf. Dis., 2019, 27(11):667-678.
ZHOU F G, LI Z Z, CHEN H Y, et al.. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells[J].Nano Energy, 2020, 73:104757.
WANG H C, BAO Z, TSAI H Y, et al.. Perovskite quantum dots and their application in light-emitting diodes[J].Small, 2018, 14(1):1702433-1-23.
刘王宇, 陈斐, 孔淑祺, 等. 全无机钙钛矿量子点的合成、性质及发光二极管应用进展[J].发光学报, 2020, 41(2):117-133.
LIU W Y, CHEN F, KONG S Q, et al.. Synthesis, properties and application of all-inorganic perovskite quantum dots[J].Chin. J. Lumin., 2020, 41(2):117-133. (in Chinese)
瞿子涵, 储泽马, 张兴旺, 等. 高效绿光钙钛矿发光二极管研究进展[J].物理学报, 2019, 68(15):158504-1-9.
QU Z H, CHU Z M, ZHANG X W, et al.. Research progress of efficient green perovskite light emitting diodes[J].Acta Phys. Sinica., 2019, 68(15):158504-1-9. (in Chinese)
CHEN D Q, LIU Y, YANG C B, et al.. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3(X=Cl,Br,I) perovskite quantum dots through fluorine doping[J].Nanoscale, 2019, 11(37):17216-17221.
SONG J Z, LI J H, LI X M, et al.. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J].Adv. Mater., 2015, 27(44):7162-7167.
DONG Y T, WANG Y K, YUAN F L, et al.. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots[J].Nat. Nanotechnol., 2020, 15(8):68-674.
肖娟, 张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展[J].物理化学学报, 2016, 32(8):1894-1912.
XIAO J, ZAHNG H L.Recent progress in organic-inorganic hybrid perovskite materials for luminescence applications[J].Acta Phys. -Chim. Sinica, 2016, 32(8):1894-1912. (in Chinese)
徐冰, 张晓利, 王恺, 等. 有机-无机混合阳离子钙钛矿发光二极管研究进展[J].科技导报, 2017, 35(17):63-72.
XU B, ZHANG X L, WANG K, et al.. Progress on organic-inorganic hybrid perovskite light emitting diodes[J].Sci. Technol. Rev., 2017, 35(17):63-72. (in Chinese)
于洪涛. MAPbBr3钙钛矿量子点的合成、钝化处理及其在发光二极管中的应用[D].南京:南京邮电大学, 2019.
YU H T. Synthesis and Surface Passivation of MAPbBr3 Perovskite Quantum Dots and Its Application in Light Emitting Diodes[D].Nanjing:Nanjing University of Posts and Telecommunications, 2019. (in Chinese)
WANG Y, SUN H D. All-inorganic metal halide perovskite nanostructures:from photophysics to light-emitting applications[J].Small Methods, 2018, 2(1):1700252.
HSIEH Y T, LIN Y F, LIU W R, et al.. Enhancing the water resistance and stability of CsPbBr3 perovskite quantum dots for light-emitting-diode applications through encapsulation in waterproof polymethylsilsesquioxane aerogels[J].ACS Appl. Mater. Interfaces, 2020, 12(52):58049-58059.
VAN LE Q, HONG K, JANG H W, et al.. Halide perovskite quantum dots for light-emitting diodes:properties, synthesis, applications, and outlooks[J].Adv. Electron. Mater., 2018, 4(12):1800335.
CHIBA T, HOSHI K, PU Y J, et al.. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment[J].ACS Appl. Mater. Interfaces, 2017, 9(21):18054-18060.
马雪, 庄仕伟, 韩丽锦, 等. 合成及薄膜制备条件对CsPbBr3全无机钙钛矿量子点特性的影响[J].发光学报, 2019, 40(8):949-955.
MA X, ZHUANG S W, HAN L J, et al.. Effects of synthesis and film preparation conditions on properties of CsPbBr3 inorganic perovskite quantum dots[J].Chin. J. Lumin., 2019, 40(8):949-955. (in Chinese)
ZHANG X, SHEN J X, VAN DE WALLE C G. First-principles simulation of carrier recombination mechanisms in halide perovskites[J].Adv. Energy Mater., 2020, 10(13):1902830.
ZOU Y, YUAN Z, BAI S, et al.. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability[J].Mater. Today Nano, 2019, 5:100028.
SIM K, JUN T, BANG J, et al.. Performance boosting strategy for perovskite light-emitting diodes[J].Appl. Phys. Rev., 2019, 6(3):031402.
WEI Z H, XING J. The rise of perovskite light-emitting diodes[J].J. Phys. Chem. Lett., 2019, 10(11):3035-3042.
MIAO Y F, CHENG L, ZOU W, et al.. Microcavity top-emission perovskite light-emitting diodes[J].Light-Sci. Appl., 2020, 9(1):89-1-6.
VAN LE Q, JANG H W, KIM S Y. Recent advances toward high-efficiency halide perovskite light-emitting diodes:review and perspective[J].Small Methods, 2018, 2(10):1700419.
CAO Y, WANG N N, TIAN H, et al.. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J].Nature, 2018, 562(7726):249-253.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3,X=Cl,Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Lett., 2015, 15(6):3692-3696.
ZHANG Q, YIN Y D. All-inorganic metal halide perovskite nanocrystals:opportunities and challenges[J].ACS Cent. Sci., 2018, 4(6):668-679.
韩丽锦, 马雪, 张源涛, 等. 醋酸铯合成CsPbBr3全无机钙钛矿量子点及薄膜发光特性[J].发光学报, 2020, 41(11):1367-1375.
HAN L J, MA X, ZHANG Y T, et al.. Luminescence properties of all inorganic perovskite CsPbBr3 quantum dots and film synthesized by cesium acetate[J].Chin. J. Lumin., 2020, 41(11):1367-1375. (in Chinese)
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence[J].J. Am. Chem. Soc., 2016, 138(43):14202-14205.
ZHANG F, ZHONG H Z, CHEN C, et al.. Brightly luminescent and color-tunable colloidal CH3NH3PbX3(X=Br,I,Cl) quantum dots:potential alternatives for display technology[J].ACS Nano, 2015, 9(4):4533-4542.
HUANG H, RAITH J, KERSHAW S V, et al.. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap[J].Nat. Commun., 2017, 8:996.
CHUN F J, ZHANG B B, LI Y C, et al.. Internally-externally defects-tailored MAPbI3 perovskites with highly enhanced air stability and quantum yield[J].Chem. Eng. J., 2020, 399:125715.
HAN D B, IMRAN M, ZHANG M J, et al.. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals:the enhancing role of the ligand-assisted reprecipitation process[J].ACS Nano, 2018, 12(8):8808-8816.
HUANG H L, ZHAO F C, LIU L G, et al.. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots:an alternative route toward efficient light-emitting diodes[J].ACS Appl. Mater. Interfaces, 2015, 7(51):28128-28133.
FANG X, ZHAI W H, ZHANG K, et al.. Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands[J].AIP Adv., 2017, 7(8):085217.
LIU Y H, XU Q, CHANG S, et al.. Brightly luminescent and color-tunable green-violet-emitting halide perovskite CH3NH3PbBr3 colloidal quantum dots:an alternative to lighting and display technology[J].Phys. Chem. Chem. Phys., 2018, 20(30):19950-19957.
余彬海, 颜才满, 饶龙石, 等. 高质量钙钛矿量子点薄膜制备及性能研究[J].光子学报, 2018, 47(2):0231001-1-8.
YU B H, YAN C M, RAO L S, et al.. Study on fabrication technology and properties of high quality perovskite quantum dots film[J].Acta Photon. Sinica, 2018, 47(2):0231001-1-8. (in Chinese)
LI J H, XU L M, WANG T, et al.. 50 fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3QLEDs via surface ligand density control[J].Adv. Mater., 2017, 29(5):1603885.
SONG J Z, LI J H, XU L M, et al.. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs[J].Adv. Mater., 2018, 30(30):1800764.
LI G P, HUANG J S, ZHU H W, et al.. Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs[J].Chem. Mater., 2018, 30(17):6099-6107.
SHI J W, LI F C, JIN Y, et al.. In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes[J].Angew. Chem., 2020, 132(49):22414-22421.
HOSHI K, CHIBA T, SATO J, et al.. Purification of perovskite quantum dots using low-dielectric-constant washing solvent “Diglyme” for highly efficient light-emitting devices[J].ACS Appl. Mater. Interfaces, 2018, 10(29):24607-24612.
MOYEN E, JUN H, KIM H M, et al.. Surface engineering of room temperature-grown inorganic perovskite quantum dots for highly efficient inverted light-emitting diodes[J].ACS Appl. Mater. Interfaces, 2018, 10(49):42647-42656.
LIU Q W, YUAN S, SUN S Q, et al.. Interfacial engineering for highly efficient quasi-two dimensional organic-inorganic hybrid perovskite light-emitting diodes[J].J. Mater. Chem., 2019, 7(15):4344-4349.
LI B, ZHANG Y A, FU L, et al.. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells[J].Nat. Commun., 2018, 9(1):1076.
LIN Q L, WANG L, LI Z H, et al.. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process[J].ACS Photonics, 2018, 5(3):939-946.
ZHANG X Y, SUN C, ZHANG Y, et al.. Bright perovskite nanocrystal films for efficient light-emitting devices[J].J. Phys. Chem. Lett., 2016, 7(22):4602-4610.
ZOU Y T, BAN M Y, YANG Y G, et al.. Boosting perovskite light-emitting diode performance via tailoring interfacial contact[J].ACS Appl. Mater. Interfaces, 2018, 10(28):24320-24326.
ZHANG X Y, ZENG Q S, XIONG Y, et al.. Energy level modification with carbon dot interlayers enables efficient perovskite solar cells and quantum dot based light-emitting diodes[J].Adv. Funct. Mater., 2020, 30(11):1910530-1-9.
ZHOU B Z, WANG Z J, GENG S C, et al.. Interface engineering of CsPbBr3 nanocrystal light-emitting diodes via atomic layer deposition[J].Phys. Status Solidi-Rapid Res. Lett., 2020, 14(6):2000083-1-7.
CAO L Z, LIU X, GUO Z, et al.. Surface/interface engineering for constructing advanced nanostructured light-emitting diodes with improved performanCe∶a brief review[J].Micromachines, 2019, 10(12):821-1-19.
CHENG X, QI C J, DING W, et al.. Boosted electroluminescence of perovskite light-emitting diodes by pinhole passivation with insulating polymer[J].J. Phys. D:Appl. Phys., 2018, 51(40):405103.
LIU Z Q, ZHANG Y Q, FAN Y, et al.. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air[J].ACS Appl. Mater. Interfaces, 2018, 10(15):13053-13061.
ZENG F L, YANG M, QIN J L, et al.. Ultrastable luminescent organic-inorganic perovskite quantum dots via surface engineering:coordination of methylammonium bromide and covalent silica encapsulation[J].ACS Appl. Mater. Interfaces, 2018, 10(49):42837-42843.
YU H T, LU Y, FENG Z Q, et al.. A MAPbBr3:poly(ethylene oxide) composite perovskite quantum dot emission layer:enhanced film stability, coverage and device performance[J].Nanoscale, 2019, 11(18):9103-9114.
ASHJARI T, ROGHABADI F A, AHMADI V. Facile synthesis of durable perovskite quantum dots film with near unity photoluminescence quantum yield for efficient perovskite light emitting diode[J].Appl. Surf. Sci., 2020, 510:145513.
XU L M, LI J H, CAI B, et al.. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes[J].Nat. Commun., 2020, 11(1):3902-1-12.
SHI Z F, LI Y, ZHANG Y T, et al.. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure[J].Nano Lett., 2017, 17(1):313-321.
CHEN W W, TANG X S, WANGYANG P H, et al.. Surface-passivated cesium lead halide perovskite quantum dots:toward efficient light-emitting diodes with an inverted sandwich structure[J].Adv. Opt. Mater., 2018, 6(14):1800007-1-7.
KHAN Q, SUBRAMANIAN A, YU G N, et al.. Structure optimization of perovskite quantum dot light-emitting diodes[J].Nanoscale, 2019, 11(11):5021-5029.
LIN J, DAI X L, LIANG X Y, et al.. High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function[J].Adv. Funct. Mater., 2020, 30(5):1907265.
YANG K Y, LI F S, LIU Y, et al.. All-solution-processed perovskite quantum dots light-emitting diodes based on the solvent engineering strategy[J].ACS Appl. Mater. Interfaces, 2018, 10(32):27374-27380.
CHIBA T, HAYASHI Y, EBE H, et al.. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J].Nat. Photonics, 2018, 12(11):681-687.
TANG X S, YANG J, LI S Q, et al.. CsPbBr3/CdS core/shell structure quantum dots for inverted light-emitting diodes application[J].Front. Chem., 2019, 7:499-1-5.
LIU J J, SHENG X X, WU Y Q, et al.. All-inorganic perovskite quantum dots/p-Si heterojunction light-emitting diodes under DC and AC driving modes[J].Adv. Opt. Mater., 2018, 6(2):1700897.
LIU J J, ZHANG X J, JI Y, et al.. Rational energy band alignment and Au nanoparticles in surface plasmon enhanced Si-based perovskite quantum dot light-emitting diodes[J].Adv. Opt. Mater., 2018, 6(19):1800693.
WANG Y, TENG Y, LU P, et al.. Low roll-off perovskite quantum dot light-emitting diodes achieved by augmenting hole mobility[J].Adv. Funct. Mater., 2020, 30(19):1910140.
LIN K B, XING J, QUAN L N, et al.. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J].Nature, 2018, 562(7726):245-248.
KUMAWAT N K, LIU X K, KABRA D, et al.. Blue perovskite light-emitting diodes:progress, challenges and future directions[J].Nanoscale, 2019, 11(5):2109-2120.
PAROBEK D, ROMAN B J, DONG Y T, et al.. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J].Nano Lett., 2016, 16(12):7376-7380.
WANG C H, HAN D B, WANG J H, et al.. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes[J].Nat. Commun., 2020, 11(1):6428-1-8.
CHEN W W, TANG X S, ZANG Z G, et al.. Tunable dual emission in Mn2+-doped CsPbX3 (X=Cl,Br) quantum dots for high efficiency white light-emitting diodes[J].Nanotechnology, 2019, 30(7):075704.
DU B, XIA Y D, WEI Q, et al.. All-inorganic perovskite nanocrystals-based light emitting diodes and solar cells[J].Chemnanomat, 2019, 5(3):266-277.
WU X T, SONG W D, LI Q, et al.. Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations[J].Chem.- Asian J., 2018, 13(13):1654-1659.
车韬, 李国辉, 冀婷, 等. 有机-无机杂化钙钛矿光电子器件的钝化技术研究进展[J].半导体技术, 2019, 44(10):745-754.
CHE T, LI G H, JI T, et al.. Research progress of passivation technology of organic-inorganic hybrid perovskite optoelectronic devices[J].Semicond. Technol., 2019, 44(10):745-754. (in Chinese)
MOON H, LEE C, LEE W, et al.. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications[J].Adv. Mater., 2019, 31(34):1804294-1-14.
韩娜, 冀婷, 崔艳霞, 等. 二维层状钙钛矿材料及其应用研究进展[J].激光与光电子学进展, 2019, 56(7):070002-1-16.
HAN N, JI T, CUI Y X, et al.. Research progress of two-dimensional layered perovskite and its application[J].Laser Optoelectron. Prog., 2019, 56(7):070002-1-16. (in Chinese)
XUAN T T, YANG X F, LOU S Q, et al.. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes[J].Nanoscale, 2017, 9(40):15286-15290.
吴江, 曹冠英, 张彦杰, 等. CsPbBr3钙钛矿量子点微晶的制备及发光性能[J].发光学报, 2019, 40(9):1073-1078.
WU J, CAO G Y, ZHANG Y J, et al.. Preparation and luminescence properties of CsPbBr3 perovskite quantum dot microcrystals[J].Chin. J. Lumin., 2019, 40(9):1073-1078. (in Chinese)
HSU S C, HUANG Y M, HUANG C P, et al.. Improved long-term reliability of a silica-encapsulated perovskite quantum-dot light-emitting device with an optically pumped remote film package[J].ACS Omega, 2021, 6(4):2836-2845.
LENG M Y, YANG Y, ZENG K, et al.. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability[J].Adv. Funct. Mater., 2018, 28(1):1704446.
KWON S B, CHOI S H, YOO J H, et al.. Organic solvent-free lyophilization assisted recrystallization synthesis of high-purity green emissive Cs3MnX5 (X = I,Br)[J].J. Alloys Compd., 2020, 845:156324.
PREMKUMAR S, LIU D, ZHANG Y M, et al.. Stable lead-free silver bismuth iodide perovskite quantum dots for UV Photodetection[J].ACS Appl. Nano Mater., 2020, 3(9):9141-9150.
XUAN T T, XIE R J. Recent processes on light-emitting lead-free metal halide perovskites[J].Chem. Eng. J., 2020, 393:124757-1-75.
ZHANG J, YANG Y, DENG H, et al.. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots[J].ACS Nano, 2017, 11(9):9294-9302.
0
浏览量
331
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构