浏览全部资源
扫码关注微信
北京大学深圳研究生院 新材料学院,广东 深圳 518055
[ "尹勇明(1989-),男,湖南郴州人,博士,2020年于北京大学获得博士学位,主要从事发光材料器件及其显示应用方面的研究。E-mail: yinyongming@smbu.edu.cn" ]
[ "孟鸿(1966-),男,陕西华阴人,博士,教授,博士研究生导师,2002年于美国加州大学洛杉矶分校获得博士学位,主要从事有机光电材料与器件的研究。E-mail: menghong@pku.edu.cn" ]
纸质出版日期:2021-04-01,
收稿日期:2020-12-19,
修回日期:2021-01-11,
扫 描 看 全 文
尹勇明, 孟鸿. 量子点、钙钛矿色转换全彩显示应用研究进展[J]. 发光学报, 2021,42(4):419-447.
YIN Yong-ming, MENG Hong. Progress of Quantum Dots and Perovskite as Color Conversion Materials for Full-color Display[J]. Chinese Journal of Luminescence, 2021,42(4):419-447.
尹勇明, 孟鸿. 量子点、钙钛矿色转换全彩显示应用研究进展[J]. 发光学报, 2021,42(4):419-447. DOI: 10.37188/CJL.20200391.
YIN Yong-ming, MENG Hong. Progress of Quantum Dots and Perovskite as Color Conversion Materials for Full-color Display[J]. Chinese Journal of Luminescence, 2021,42(4):419-447. DOI: 10.37188/CJL.20200391.
量子点具有色纯度高、发光颜色可调和荧光量子产率高等诸多优良的光电特性,已成为一类非常重要的发光材料,在显示及照明领域都受到了广泛的关注。目前,量子点材料的显示应用主要是基于其光致发光特性,或者说色转换特性,用于提升液晶面板的显示色域、或者与蓝光主动发光器件搭配实现全彩显示。本文首先综述常规量子点(CdSe、InP)在液晶显示方面的应用研究进展,详细阐述了量子点集成到液晶显示器面板中所需要考量的面板架构、光学特性、可靠性、制程工艺等一些关键问题;然后,进一步对量子点色转换主动发光显示应用进行了分析,就如何获得高效色转换、量子点材料图案化以及搭配蓝光发光器件的光学集成问题进行重点关注;最后,针对当前受到广泛关注的钙钛矿材料,就其色转换全彩显示应用研究进展进行了分析。
Quantum dots(QDs) have many excellent optoelectronic characteristics
such as high color purity
tunable emission color
high photoluminescence quantum yield and so on. At present
the display applications of quantum dots are mainly based on their photoluminescence characteristics
or color conversion characteristics
to enhance the color gamut of liquid crystal display panels or to achieve full-color display combining with blue light-emitting devices. In this paper
we will first review the progress of conventional quantum dots(CdSe
InP) in liquid crystal display(LCD) application. Special focus would be laid on the panel architecture
optical properties
reliability and process technologies which are significant as incorporating QDs into LCD panels. In the next
we will analyze the application of color conversion potentials of QDs for active light-emitting displays. Finally
the progress of perovskite materials in color conversion applications for full-color display will be discussed.
量子点钙钛矿色转换光致发光全彩显示
quantum dotsperovskitecolor conversionphotoluminescencefull-color display
HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light: Sci. Appl., 2020, 9(1):105-1-16.
CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display:present status and future perspectives [J]. Light:Sci. Appl., 2018, 7(3):17168-1-13.
LIU Z, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology [J]. Light:Sci. Appl., 2020, 9(1):83-1-23.
季洪雷,周青超,潘俊,等. 量子点液晶显示背光技术 [J]. 中国光学,2017,10(5):666-680.
JI H L, ZHOU Q C, PAN J, et al. Advances and prospects in quantum dots based backlights [J]. Chin. Opt., 2017, 10(5):666-680. (in Chinese)
STECKEL J S, HO J, HAMILTON C, et al. Quantum dots:the ultimate down-conversion material for LCD displays [J]. J. Soc. Inf. Disp., 2015, 23(7):294-305.
WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784):634-638.
WANG L S, LIN J, HU Y S, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(44):38755-38760.
MANDERS J R, QIAN L, TITOV A, et al. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays [J]. J. Soc. Inf. Disp., 2015, 23(11):523-528.
DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525):96-99.
ZHOU X J, TIAN P F, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display [J]. Prog. Quantum Electron., 2020, 71:100263.
KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing [J]. Nat. Photonics, 2011, 5(3):176-182.
BOURZAC K. Quantum dots go on display [J]. Nature, 2013, 493(7432):283.
LEE J, SUNDAR V C, HEINE J R, et al. Full color emission from Ⅱ-Ⅵ semiconductor quantum dot-polymer composites [J]. Adv. Mater., 2000, 12(15):1102-1105.
KIM T H, JUN S, CHO K S, et al. Bright and stable quantum dots and their applications in full-color displays [J]. MRS Bull., 2013, 38(9):712-720.
LUO Z Y, XU D M, WU S T. Emerging quantum-dots-enhanced LCDs [J]. J. Disp. Technol., 2014, 10(7):526-539.
ZHAO M, ZHANG Q Y, XIA Z G. Narrow-band emitters in LED backlights for liquid-crystal displays [J]. Mater. Today, 2020, 40:246-265.
CHEN H S, HSU C K, HONG H Y. InGaN-CdSe-ZnSe quantum dots white LEDs [J]. IEEE Photonics Technol. Lett., 2006, 18(1):193-195.
NIZAMOGLU S, ZENGIN G, DEMIR H V. Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index [J]. Appl. Phys. Lett., 2008, 92(3):031102-1-3.
ZIEGLER J, XU S, KUCUR E, et al. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs [J]. Adv. Mater., 2008, 20(21):4068-4073.
ALI M, CHATTOPADHYAY S, NAG A, et al. White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio [J]. Nanotechnology, 2007, 18(7):075401-1-4.
NIZAMOGLU S, OZEL T, SARI E, et al. White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes [J]. Nanotechnology, 2007, 18(6):065709-1-5.
JANG E, JUN S, JANG H, et al. White-light-emitting diodes with quantum dot color converters for display backlights [J]. Adv. Mater., 2010, 22(28):3076-3080.
JI S H, LEE H C, YOON J M, et al. P.91:adobe RGB LCD monitor with 3 primary colors by deep green color filter technology [J]. SID Symp. Dig. Techn. Pap., 2013, 44(1):1332-1334.
KURTIN J, MANGUM B, THEOBALD B. 32-1:on-chip quantum dots for high color gamut displays [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1):447-450.
KURTIN J, PUETZ N, THEOBALD B, et al. 12.5L:late-news paper:quantum dots for high color gamut LCD displays using an on-chip LED solution [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1):146-148.
CHEN C J, LIEN J Y, WANG S L, et al. P-91:highly-efficient LEDs with on-chip quantum-dot package for wide color gamut LCD display [J]. SID Symp. Dig. Tech. Pap., 2016, 47(1):1465-1468.
ISHINO H, MIIKE M, NAKAMURA T, et al. 19.2:invited paper:novel wide-color-gamut LED backlight for 4K LCD embedded with mixing cup structure for isotropic light source [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1):241-244.
TWIETMEYER K, SADASIVAN S. 41-4:distinguished paper:design considerations for highly efficient edge-lit quantum dot displays [J]. SID Symp. Dig. Tech. Pap., 2016, 47(1):560-563.
SADASIVAN S, BAUSEMER K, CORLISS S, et al. 27-1:invited paper:performance benchmarking of wide color gamut televisions and monitors [J]. SID Symp. Dig. Tech. Pap., 2016, 47(1):333-335.
CHEN J, HARDEV V, YUREK J. Quantum-dot displays:giving LCDs a competitive edge through color [J]. Inf. Disp., 2013, 29(1):12-17.
CHEN J, HARDEV V, HARTLOVE J, et al. 66.1: distinguised paper:a high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film [J]. SID Symp. Dig. Tech. Pap., 2012, 43(1):895-896.
VAN DERLOFSKE J F, HILLIS J M, LATHROP A, et al. 19.1:invited paper:illuminating the value of larger color gamuts for quantum dot displays [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1):237-240.
CHEN J, HARTLOVE J, HARDEV V, et al. P-119:high efficiency LCDs using quantum dot enhancement films [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1):1428-1430.
CHEN J, GENSLER S, HARTLOVE J, et al. 14.3:quantum dots:optimizing LCD systems to achieve rec. 2020 color performance [J]. SID Symp. Dig. Tech. Pap., 2015, 46(1):173-175.
LEE E, WANG C, HOTZ C, et al. 41-1:invited paper:“Greener” quantum-dot enabled LCDs with BT.2020 color gamut [J]. SID Symp. Dig. Tech. Pap., 2016, 47(1):549-551.
COE-SULLIVAN S, LIU W H, ALLEN P, et al. Quantum dots for LED downconversion in display applications [J]. ECS J. Solid State Sci. Technol., 2012, 2(2):R3026-R3030.
KIM Y, JANG H, MIN J H, et al. 79-5:late-news-paper:bright and narrow green emitting InP-based quantum dots for wide color gamut displays [J]. SID Symp. Dig. Tech. Pap., 2020, 51(1):1186-1189.
HU Z P, YIN Y M, ALI M U, et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays [J]. Nanoscale, 2020, 12(3):2103-2110.
RAMASAMY P, KIM N, KANG Y S, et al. Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots [J]. Chem. Mater., 2017, 29(16):6893-6899.
ZHOU T T, ZHANG B, QI Y L, et al. P-92:fabrication and patterning of a wide-color-gamut color filter based on quantum dots [J]. SID Symp. Dig. Tech. Pap., 2016, 47(1):1469-1471.
SUZUKI M, KISHIMOTO T, HIRAYAMA Y, et al. 27-3:invited paper:quantum rod containing film development for display applications [J]. SID Symp. Dig. Tech. Pap., 2016, 47(1):340-343.
LEE E, KAN S, HOTZ C, et al. 67-2:invited paper:ambient processing of quantum dot photoresist for emissive displays [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1):984-987.
HASEGAWA M, HIRAYAMA Y. 25-1:invited paper:improvement of viewing angle and color gamut of twisted nematic liquid crystal display using inkjet-printed quantum rod color pixel converter [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1):345-348.
HAN S F, KISELEV F D, MLEJNEK M. 75-2:quantum dots on color filter LCD design study [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1):1067-1070.
TANGIRALA R, LEE E, HOTZ C, et al. 86-2:color conversion using quantum dots for LCD, OLED, and MicroLED displays [J]. SID Symp. Dig. Tech. Pap., 2020, 51(1):1299-1302.
JUN S, LEE J, JANG E. Highly luminescent and photostable quantum dot-silica monolith and its application to light-emitting diodes [J]. ACS Nano, 2013, 7(2):1472-1477.
TAO P, LI Y, SIEGEL R W, et al. Transparent luminescent silicone nanocomposites filled with bimodal PDMS-brush-grafted CdSe quantum dots [J]. J. Mater. Chem. C, 2013, 1(1):86-94.
KIM H C, HONG H G, YOON C, et al. Fabrication of high quantum yield quantum dot/polymer films by enhancing dispersion of quantum dots using silica particles [J]. J. Colloid Interface Sci., 2013, 393:74-79.
NGUYEN T D, HAMAD W Y, MACLACHLAN M J. CdS quantum dots encapsulated in chiral nematic mesoporous silica:new iridescent and luminescent materials [J]. Adv. Funct. Mater., 2014, 24(6):777-783.
YOON C, KIM T, SHIN M H, et al. Highly luminescent and stable white light-emitting diodes created by direct incorporation of Cd-free quantum dots in silicone resins using the thiol group [J]. J. Mater. Chem. C, 2015, 3(26):6908-6915.
ZHAO Y M, RIEMERSMA C, PIETRA F, et al. High-temperature luminescence quenching of colloidal quantum dots [J]. ACS Nano, 2012, 6(10):9058-9067.
KIM H J, SHIN M H, LEE J Y, et al. Realization of 95% of the rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film [J]. Opt. Express, 2017, 25(10):10724-10734.
HU Z P, ZHANG S J, PENG W X, et al. 75-4:inkjet-printed quantum dot display with blue OLEDs for next generation display [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1):1075-1078.
KIM L A, ANIKEEVA P O, COE-SULLIVAN S A, et al. Contact printing of quantum dot light-emitting devices [J]. Nano Lett., 2008, 8(12):4513-4517.
LEE K H, HAN C Y, KANG H D, et al. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer [J]. ACS Nano, 2015, 9(11):10941-10949.
CHOI M K, YANG J, KANG K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing [J]. Nat. Commun., 2015, 6(1):7149.
HUANG B L, GUO T L, XU S, et al. Color converting film with quantum-dots for the liquid crystal displays based on inkjet printing [J]. IEEE Photonics J., 2019, 11(3):7000609.
KIM H J, SHIN M H, HONG H G, et al. Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals [J]. J. Disp. Technol., 2016, 12(6):526-531.
BAI X, YANG H C, ZHAO B X, et al. 4-4:flexible quantum dot color converter film for micro-LED applications [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1):30-33.
PARK J S, KYHM J, KIM H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display [J]. Nano Lett., 2016, 16(11):6946-6953.
TORRISI F, HASAN T, WU W P, et al. Inkjet-printed graphene electronics [J]. ACS Nano, 2012, 6(4):2992-3006.
SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet printing-process and its applications [J]. Adv. Mater., 2010, 22(6):673-685.
CALVERT P. Inkjet printing for materials and devices [J]. Chem. Mater., 2001, 13(10):3299-3305.
BAO B, LI M Z, LI Y, et al. Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing [J]. Small, 2015, 11(14):1649-1654.
DE GANS B J, DUINEVELD P C, SCHUBERT U S. Inkjet printing of polymers:state of the art and future developments [J]. Adv. Mater., 2004, 16(3):203-213.
JIANG C B, ZHONG Z M, LIU B Q, et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2016, 8(39):26162-26168.
KIM J Y, INGROSSO C, FAKHFOURI V, et al. Inkjet-printed multicolor arrays of highly luminescent nanocrystal-based nanocomposites [J]. Small, 2009, 5(9):1051-1057.
KIM T H, CARLSON A, AHN J H, et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps [J]. Appl. Phys. Lett., 2009, 94(11):113502.
FENG X, MEITL M A, BOWEN A M, et al. Competing fracture in kinetically controlled transfer printing [J]. Langmuir, 2007, 23(25):12555-12560.
BAE W K, KWAK J, LIM J, et al. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method [J]. Nano Lett., 2010, 10(7):2368-2373.
HARWELL J, BURCH J, FIKOURAS A, et al. Patterning multicolor hybrid perovskite films via top-down lithography [J]. ACS Nano, 2019, 13(4):3823-3829.
LIU Y, LI F S, XU Z W, et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique [J]. ACS Appl. Mater. Interfaces, 2017, 9(30):25506-25512.
MONTEUX C, LEQUEUX F. Packing and sorting colloids at the contact line of a drying drop [J]. Langmuir, 2011, 27(6):2917-2922.
DUAN M, FENG Z Y, WU Y W, et al. Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion [J]. Adv. Mater. Technol., 2019, 4(12):1900779.
WEI W J, XU H, YOU Q L, et al. Preparation of quantum dot luminescent materials through the ink approach [J]. Mater. Des., 2016, 91:165-170.
WAKIMOTO T, OCHI H, KAWAMI S, et al. Dot-matrix display using organic light-emitting diodes [J]. J. Soc. Inf. Disp., 1997, 5(3):235-240.
HOSOKAWA C, MATSUURA M, EIDA M, et al. Organic multicolor EL display with fine pixels [J]. J. Soc. Inf. Disp., 1997, 5(4):331-334.
RAJESWARAN G, ITOH M, BOROSON M, et al. 40.1:invited paper:active matrix low temperature poly-Si TFT/OLED full color displays:development status [J]. SID Symp. Dig. Tech. Pap., 2000, 31(1):974-977.
KASHIWABARA M, HANAWA K, ASAKI R, et al. 29.5L:late-news paper:advanced AM-OLED display based on white emitter with microcavity structure [J]. SID Symp. Dig. Tech. Pap., 2004, 35(1):1017-1019.
LEE S, CHU C, CHUNG J, et al. 68.2:achieving high color gamut with microcavity on white OLED [J]. SID Symp. Dig. Tech. Pap., 2008, 39(1):1042-1045.
CHOI H S, KIM H K, PANG H S, et al. P-178:white OLED panel with RGBW color filters based on dual-plate OLED display(DOD) structure [J]. SID Symp. Dig. Tech. Pap., 2009, 40(1):1748-1751.
HAN C W, PIEH S H, PANG H S, et al. 11.1:invited paper:15inch RGBW panel using two stacked white OLED and color filter for largesized display applications [J]. SID Symp. Dig. Tech. Pap., 2010, 41(1):136-139.
HAN C W, KIM K M, BAE S J, et al. 21.2:55-inch FHD OLED TV employing new tandem WOLEDs [J]. SID Symp. dig. Tech. Pap., 2012, 43(1):279-281.
NAM W J, SHIM J S, SHIN H J, et al. 21. 2:distinguished paper:55-inch OLED TV using InGaZnO TFTs with WRGB pixel design [J]. SID Symp. Dig. Tech. Pap., 2013, 44(1):243-246.
TANI R, YOON J S, YUN S I, et al. 64.2:panel and circuit designs for the World's first 65-inch UHD OLED TV [J]. SID Symp. Dig. Tech. Pap., 2015, 46(1):950-953.
CHU C, HA J, CHOI J, et al. 25.4:advances and issues in white OLED and color filter architecture [J]. SID Symp. Dig. Tech. Pap., 2007, 38(1):1118-1121.
JUNG Y K, CHOI H S, AHN S Y, et al. 52-3:distinguished paper:3 stacked top emitting white OLED for high resolution OLED TV [J]. SID Symp. Dig. Tech. Pap., 2016, 47(1):707-710.
HAN C W, HAN M Y, JOUNG S R, et al. 3-1: invited paper:3 stack-3 color white OLEDs for 4K premium OLED TV [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1):1-4.
KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode [J]. Nature, 2020, 586(7829):385-389.
PAN S, DUAN M, HU Z P, et al. 86-4:color conversion enhancement of perovskite quantum dots by integrating with cholesteric liquid crystals [J]. SID Symp. Dig. Tech. Pap., 2020, 51(1):1307-1309.
CAI X Y, SU S J. Marching toward highly efficient, pure-blue, and stable thermally activated delayed fluorescent organic light-emitting diodes [J]. Adv. Funct. Mater., 2018, 28(43):1802558-1-33.
VIREY E H, BARON N. 45-1:status and prospects of microLED displays [J]. SID Symp. Dig. Tech. Pap., 2018, 49(1):593-596.
JUNG T, CHOI J H, JANG S H, et al. 32-1:invited paper:review of micro-light-emitting-diode technology for micro-display applications [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1):442-446.
HENRY W, PERCIVAL C. 55-2:invited paper:ILED displays:next generation display technology [J]. SID Symp. Dig. Tech. Pap., 2016, 47(1):747-750.
HAN H V, LIN H Y, LIN C C, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology [J]. Opt. Express, 2015, 23(25):32504-32515.
LIN H Y, SHER C W, HSIEH D H, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold [J]. Photonics Res., 2017, 5(5):411-416.
KIM H M, RYU M, CHA J H J, et al. 4-3:distinguished paper:10 μm pixel, quantum-dots color conversion layer for high resolution and full color active matrix micro-LED display [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1):26-29.
GOU F W, HSIANG E L, TAN G J, et al. 4-2:distinguished student paper:high efficiency color-converted micro-LED displays [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1):22-25.
GONG Z, GU E, JIN S R, et al. Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays:promising candidates for micro-displays and colour conversion [J]. J. Phys. D: Appl. Phys., 2008, 41(9):094002-1-6.
LIU Z J, WONG K M, CHONG W C, et al. P-34:active matrix programmable monolithic light emitting diodes on silicon (LEDoS) displays [J]. SID Symp. Dig. Tech. Pap., 2011, 42(1):1215-1218.
GU Y, WANG T, JIANG B, et al. 16-1:invited paper:hybrid full-color micro-LED display with quantum dots color conversion by using inkjet-printing and photo-lithography methods [J]. SID Symp. Dig. Tech. Pap., 2020, 51(1):208-211.
WELLS H L. Über die cäsium- und kalium-bleihalogenide [J]. Z. Anorg. Chem., 1893, 3(1):195-210.
WEBER D. CH3NH3PbX3, a Pb(Ⅱ)-system with cubic perovskite structure [J]. Z. Naturforsch. B, 1978, 33(12):1443-1445.
WEBER D. CH3NH3SnBrXI3-x(x=0-3)-SN(Ⅱ)-system with cubic perovskite structure [J]. Z. Naturforsch. B, 1978, 33(8):862-865.
ERA M, MORIMOTO S, TSUTSUI T, et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2Pbl4 [J]. Appl. Phys. Lett., 1994, 65(6):676-678.
KAGAN C R, MITZI D B, DIMITRAKOPOULOS C D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors [J]. Science, 1999, 286(5441):945-947.
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9):687-692.
DOU L T, YANG Y, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nat. Commun., 2014, 5(1):5404.
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562(7726):249-253.
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726):245-248.
LIU Y, CUI J Y, DU K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures [J]. Nat. Photonics, 2019, 13(11):760-764.
MAES J, BALCAEN L, DRIJVERS E, et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals [J]. J. Phys. Chem. Lett., 2018, 9(11):3093-3097.
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals [J]. ACS Nano, 2016, 10(2):2071-2081.
ZHANG F, ZHONG H Z, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3(X=Br, I, Cl) quantum dots:potential alternatives for display technology [J]. ACS Nano, 2015, 9(4):4533-4542.
ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights [J]. Adv. Mater., 2016, 28(41):9163-9168.
CHEN N J, BAI Z L, WANG Z M, et al. P-119:low cost perovskite quantum dots film based wide color gamut backlight unit for LCD TVs [J]. SID Symp. Dig. Tech. Pap., 2018, 49(1):1657-1659.
JI H L, XU H S, JIANG F, et al. 75-1:invited paper:hybrid backlight system based on blue, red LEDs and perovskite quantum dots for liquid crystal display application [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1):1064-1066.
BAI Z L, LI J, ZHANG T, et al. P-101:In-situ fabrication strategy of perovskite quantum dots for novel display technology [J]. SID Symp. Dig. Tech. Pap., 2020, 51(1):1743-1744.
WANG Y N, HE J, CHEN H, et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films [J]. Adv. Mater., 2016, 28(48):10710-10717.
SUN C, SHEN X Y, ZHANG Y, et al. Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes [J]. Nanotechnology, 2017, 28(36):365601.
TANG Y, LU H, LI J S, et al. Improvement of optical and thermal properties for quantum dots WLEDs by controlling layer location [J]. IEEE Access, 2019, 7:77642-77648.
LI F, JI H L, XU H S, et al. 16-4:late-news paper:high color gamut mini-LED backlight demon based on dual-emissive perovskite quantum dots films [J]. SID Symp. Dig. Tech. Pap., 2020, 51(1):219-221.
XIAO Z G, DONG Q F, BI C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement [J]. Adv. Mater., 2014, 26(37):6503-6509.
ZHANG F, SONG J, ZHANG L X, et al. Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment [J]. J. Mater. Chem. A, 2016, 4(22):8554-8561.
LIU Z H, QIU L B, JUAREZ-PEREZ E J, et al. Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules [J]. Nat. Commun., 2018, 9(1):3880.
YIN Y M, ALI M U, LIU M, et al. Vacuum-drying processed micrometer-thick stable CsPbBr3 perovskite films with efficient blue-to-green photoconversion [J]. Small, 2019, 15(31):1901954.
CHO H, KIM Y H, WOLF C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes [J]. Adv. Mater., 2018, 30(42):1704587.
HU Z P, WU Y W, HE B, et al. P-107:Inkjet printed uniform quantum dots as color conversion for active matrix micro-LED display [J]. SID Symp. Dig. Tech. Pap., 2020, 51(1):1755-1757.
YIN Y M, HU Z P, ALI M U, et al. Full-color micro-LED display with csPbBr3 perovskite and CdSe quantum dots as color conversion layers [J]. Adv. Mater. Technol., 2020, 5(8):2000251.
0
浏览量
617
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构