浏览全部资源
扫码关注微信
1.陕西师范大学,化学化工学院,陕西 西安 710062
2.陕西师范大学,基础实验教学中心,陕西 西安 710062
3.烟台希尔德新材料有限公司,山东 烟台 264006
[ "魏恒伟(1988-),男,陕西周至人,博士,实验师,2017年于陕西师范大学获得博士学位,主要从事白光LED用无机发光材料的研究E-mail: whwsnnu@snnu.edu.cn" ]
[ "李雅婷(1999-),女,内蒙古鄂尔多斯人,在读本科生,主要从事白光LED用荧光粉的研究。E-mail: 1922501831@snnu.edu.cn" ]
[ "焦桓(1968-),女,陕西三原人,博士,教授,2001年于西北工业大学获得博士学位,主要从事固体无机材料、照明、显示与新能源发光材料的基础与应用研究。E-mail: jiaohuan@snnu.edu.cn" ]
纸质出版日期:2021-05-01,
收稿日期:2020-12-15,
修回日期:2021-02-02,
移动端阅览
魏恒伟, 李雅婷, 凌钰婷, 等. Ba2+调制SrGe4-
HENG-WEI WEI, YA-TING LI, YU-TING LING, et al. Crystal Structure and Luminescent Properties of Ba2+ Modulated SrGe4-
魏恒伟, 李雅婷, 凌钰婷, 等. Ba2+调制SrGe4-
HENG-WEI WEI, YA-TING LI, YU-TING LING, et al. Crystal Structure and Luminescent Properties of Ba2+ Modulated SrGe4-
采用传统固相法在1 100 ℃合成了SrGe
4-
x
O
9
∶
x
Mn
4+
(SGOM)系列荧光粉,通过Ba
2+
取代Sr
2+
调制了荧光粉基质的局部结构,对样品的晶体结构、发光性质和热稳定性进行了探讨。XRD测试结果表明
Mn
4+
和Ba
2+
均成功地掺杂进入基质SrGe
4
O
9
晶格,没有其他物相产生。在275 nm紫外光激发下
SGOM荧光粉的发射光谱是位于600~750 nm的深红色谱带,峰值波长位于660 nm,主要源于Mn
4+
离子
2
E
g
→
4
A
2g
能级跃迁的窄带发射,优化的Mn
4+
浓度为0.015。利用Ba
2+
离子对SrGe
3.985
O
9
∶0.015Mn
4+
荧光粉的发光性质进行调控,发现随着Ba
2+
浓度增大,发射光谱的强度先上升后下降,最佳Ba
2+
浓度为0.4。 Ba
2+
离子的引入造成基质结构中Sr1O10多面体产生局部扩张,导致样品的发射光谱展宽。为了解决封装白光LED中有机材料存在的难以承受发热的问题,制备出了基于SrGe
3.985
O
9
∶0.015Mn
4+
荧光粉的荧光玻璃。优良的发光性质和热稳定性使SGOM荧光粉具备了应用于白光LED器件的前景。
A series of SrGe
4-
x
O
9
∶
x
Mn
4+
(SGOM) phosphors were prepared at 1 100 ℃ by traditional solid-state method. The crystal structure
luminescent properties and temperature-dependent of SGOM were investigated. Local structure of SrGe
4
O
9
(SGO) was modulated by the introducing of Ba
2+
ions. The results of XRD showed that both Mn
4+
and Ba
2+
ions were successfully doped into the SGO
and no other impurity phase was detected. Fluorescent measurement indicates that SGOM phosphors produce red emission(600~750 nm) upon UV(275 nm) light excitation
which can be attributed to
2
E
g
→
4
A
2g
of Mn
4+
. The optimal Mn
4+
concentration in these phosphors equals 0.015. The emission spectra of SrGe
3.985
O
9
∶0.015Mn
4+
was tuned by the introducing of Ba
2+
ions. The luminescent intensity of SGOM was improved up to 50% when the Ba
2+
doping concentration is 0.4
and an emission spectra broadening was also observed. This phenomenon is thought to be originated from the expanding of the local structure of Sr1O10 polyhedron caused by the Ba
2+
doping. The phosphor-in-glass(PiG) technique was used to explore the properties of SGOM phosphor to overcome the decomposing issue of the organic materials. These phosphors exhibit potential application in WLED.
晶体结构SGOM荧光粉Ba2+调制荧光玻璃
crystal structureSGOM phosphorsBa2+ modulatedphosphor in glass
PARK K, HEO M H, KIM K Y, et al.. Photoluminescence properties of nano-sized (Y0.5Gd0.5)PO4∶Eu3+ phosphor powders synthesized by solution combustion method[J].Powder Technol., 2013, 237:102-106.
SMET P F, PARMENTIER A B, POELMAN D. Selecting conversion phosphors for white light-emitting diodes[J].J. Electrochem. Soc., 2011, 158(6):R37-R54.
KOMURO N, MIKAMI M, SHIMOMURA Y, et al.. Synthesis, structure and optical properties of cerium-doped calcium barium phosphate——a novel blue-green phosphor for solid-state lighting[J].J. Mater. Chem. C, 2015, 3(1):204-210.
JANG H S, IM W B, LEE D C, et al.. Enhancement of red spectral emission intensity of Y3Al4O12∶Ce3+ phosphor via Pr co-doping and Tb substitution for the application to White LEDs[J].J. Lumin., 2017, 126(2):371-377.
TANNER P A. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium[J].Chem. Soc. Rev., 2013, 42(12):5090-5101.
FUJITA S, SAKAMOTO A, TANABE S. Luminescence characteristics of YAG glass-ceramic phosphor for white LED[J].IEEE J. Sel. Top. Quantum Electron., 2008, 14(5):1387-1391.
ZHANG S A, HU Y H. Photoluminescence spectroscopies and temperature-dependent luminescence of Mn4+ in BaGe4O9 phosphor[J].J. Lumin., 2016, 177:394-401.
JIN Y H, FU Y R, HU Y H, et al.. A high color purity deep red emitting phosphor SrGe4O9∶Mn4+ for warm white LEDs[J].Powder Technol., 2016, 292:74-79.
KIM M, SINGH S P, SHIM S, et al.. Discovery of a quaternary sulfide, Ba2-xLiAlS4∶Eu2+, and its potential as a fast-decaying LED phosphor[J].Chem. Mater., 2020, 32(15):6697-6705.
LI C, WANG X M, CHI F F, et al.. A narrow-band blue emitting phosphor Ca8Mg7Si9N22∶Eu2+ for pc-LEDs[J].J. Mater. Chem. C, 2019, 7(13):3730-3734.
JIA Y J, PAN Y X, ZHU J W, et al.. In situ organic solvent-free synthesis of a novel red emitting Mn4+ doped KRbGeF6 phosphor at the room temperature[J].Dalton Trans., 2020, 49(38):13226-13232.
ZHOU Y, WANG X M, WANG C P, et al.. A strong zero-phonon line red phosphor BaNbF7∶Mn4+ for white LEDs[J].Inorg. Chem. Front., 2020, 7(18):3371-3378.
ELZER E, STROBEL P, WEILER V, et al.. The highly efficient red-emitting phosphor Sr2[BeAl3N4]∶Eu2+[J].Chem. Mater., 2020, 32(15):6611-6617.
ZHU H M, LIN C C, LUO W Q, et al.. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes[J].Natmmun., 2014, 5(1):4312-1-10.
ZHOU Y, ZHANG S, WANG X M, et al.. Structure and luminescence properties of Mn4+-activated K3TaO2F4 red phosphor for white LEDs[J].Inorg. Chem., 2019, 58(7):4412-4419.
PENG M Y, YIN X W, TANNER P A, et al.. Site occupancy preference, enhancement mechanism, and thermal resistance of Mn4+ red luminescence in Sr4Al14O25∶Mn4+ for warm WLEDs[J].Chem. Mater., 2015, 27(8):2938-2945.
KONG L, LIU Y Y, DONG L P, et al.. Enhanced red luminescence in CaAl12O19∶Mn4+ via doping Ga3+ for plant growth lighting[J].Dalton Trans., 2020, 49(6):1947-1954.
PARK W B. Color tuning of a Mn4+ doped phosphor:Sr1-xBaxGe4O9∶<math><mrow><msubsup><mrow><mtext>Mn</mtext></mrow><mrow><mn>0.005</mn></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msubsup></mrow></math> (0.00≤x≤1.00)[J].J. Korean Chem. Soc., 2017, 61(4):163-167.
NISHI F. Strontium tetragermanate, SrGe4O9[J].Acta Cryst.,1996, C52:2393-2395.
XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs[J].Prog. Mater. Sci., 2016, 84:59-117.
WANG B, LIN H, XU J, et al.. CaMg2Al16O27∶Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED[J].ACS Appl. Mater. Interfaces, 2014, 6(24):22905-22913.
LIANG S S, SHANG M M, LIAN H Z, et al.. Deep red MGe4O9∶Mn4+ (M=Sr,Ba) phosphors:structure, luminescence properties and application in warm white light emitting diodes[J].J. Mater. Chem. C, 2016, 4(26):6409-6416.
SHASHKOV A Y, RANNEV N V, VENEVTSEV Y N. Atomic structure of crystals of alpha-(PbGe4O9), BaGe4O9, and Pb2/3Sr1/3-Ge4O9 and features of the coordination of germanium atoms in framework[J].Sov. J. Coordinat. Chem.,1985, 10(10):1420-1426.
QIU S J, WEI H W, WANG X M, et al.. Red emitting phosphor K2SiF6∶Mn4+:controlled synthesis, growth mechanism, and shape-dependent luminescence properties[J].J. Lumin., 2020, 226:117426.
WANG B, LIN H, HUANG F, et al.. Non-rare-earth BaMgAl10-2xO17∶xMn4+,xMg2+:a narrow-band red phosphor for use as a high-power warm W-LED[J].Chem. Mater., 2016, 28(10):3515-3524.
张延, 刘升, 许虹杰, 等. LED用荧光玻璃的制备及性能研究[J].无机材料学报, 2015, 30(6):588-592.
ZHANG Y, LIU S, XU H J, et al.. Preparation and performance of Ce∶YAG phosphor-in-glass[J].J. Inorg. Mater., 2015, 30(6):588-592. (in Chinese)
WANG J, TSAI C C, CHENG W C, et al..High thermal stability of phosphor-converted white light-emitting diodes employing Ce∶YAG-doped glass[J].IEEE J. Sel. Top. Quantum Electron., 2011, 17(3):741-746.
岳相铭, 林航, 林世盛, 等. La3Si6N11∶Ce3+荧光玻璃陶瓷及其在高功率固态照明中的应用[J].发光学报, 2020, 41(12):1529-1537.
YUE X M, LIN H, LIN S S, et al.. La3Si6N11∶Ce3+ luminescent glass ceramics applicable to high-power solid-state lighting[J].Chin. J. Lumin., 2020, 41(12):1529-1537. (in Chinese)
朱学绘, 范广涵, 王海丽, 等. 新型Ce∶YAG陶瓷荧光体封装白光LED的性能[J].功能材料与器件学报, 2010, 16(4):389-393.
ZHU X H, FAN G H, WANG H L, et al.. White LED packaged by novel Ce∶YAG ceramic phosphor[J].J. Funct. Mater. Dev., 2010, 16(4):389-393. (in Chinese)
黄海宇, 向卫东, 张志敏, 等. YAG∶Ce, Mn微晶玻璃的制备及光谱性能研究[J].中国稀土学报, 2012, 30(6):726-731.
HUANG H Y, XIANG W D, ZHANG Z M, et al.. Preparation and luminescence properties of cerium, manganese co-doping YAG glass ceramics[J].J. Chin. Rare Earth Soc., 2012, 30(6):726-731. (in Chinese)
0
浏览量
137
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构