浏览全部资源
扫码关注微信
华东理工大学 化学与分子工程学院, 上海功能材料化学重点实验室, 精细化工研究所, 上海 200237
[ "吕妍婷(1997-),女,浙江绍兴人,硕士研究生,2019年于浙江工业大学获得学士学位,主要从事聚集诱导发光荧光探针的研究。E-mail: lvyanting@mail.ecust.edu.cn" ]
[ "王琪(1985-),女,四川南充人,博士,副教授,硕士研究生导师,2014年于四川大学获得博士学位,主要从事药物载体材料、肿瘤靶向性课题以及诊断治疗相结合、构建新型给药系统等的研究。E-mail: wangqi@ecust.edu.cn" ]
[ "朱为宏(1970-),男,江苏建湖人,博士,教授,博士研究生导师,1999年于华东理工大学获得博士学位,主要从事荧光探针、光致变色染料和有机太阳能电池敏化染料等的研究。E-mail: whzhu@ecust.edu.cn" ]
纸质出版日期:2021-03-01,
收稿日期:2020-12-14,
修回日期:2021-01-04,
移动端阅览
吕妍婷, 王琪, 朱为宏. 聚集诱导发光材料在食品安全检测中的应用[J]. 发光学报, 2021,42(3):319-335.
YAN-TING LYU, QI WANG, WEI-HONG ZHU. Food Safety Detection Using Aggregation-induced Emission Materials. [J]. Chinese journal of luminescence, 2021, 42(3): 319-335.
吕妍婷, 王琪, 朱为宏. 聚集诱导发光材料在食品安全检测中的应用[J]. 发光学报, 2021,42(3):319-335. DOI: 10.37188/CJL.20200382.
YAN-TING LYU, QI WANG, WEI-HONG ZHU. Food Safety Detection Using Aggregation-induced Emission Materials. [J]. Chinese journal of luminescence, 2021, 42(3): 319-335. DOI: 10.37188/CJL.20200382.
食品中有害物质的快速检测对预防食源性疾病和保障食品安全至关重要。荧光传感具有选择性好、灵敏度高和响应迅速等优点,相较于传统的检测方法具有很大的应用优势。聚集诱导发光材料(AIEgens)在分散状态下荧光较弱,而在聚集态时发出强烈的荧光,可有效克服传统荧光材料聚集荧光猝灭(ACQ)的应用局限。独特的荧光激活特性、较弱的背景荧光、较大的斯托克斯位移和出色的光稳定性等优势将AIEgens推广到食品安全检测领域。本文分析了近年来AIEgens在食品安全检测中的应用进展,如检测农药残留、兽药残留、重金属、病原体、食品添加剂等的荧光传感器,并对其存在的问题和应用前景进行了总结和展望。
Rapid detection of food contaminants is essential for preventing foodborne diseases and ensuring food safety. Fluorescence sensors with high selectivity
sensitivity and rapid responsibility exhibit superior advantages than common detection methods. Aggregation-induced emission luminogens(AIEgens) emit weakly in the molecular or dispersed state while exhibit strong fluorescence in the aggregated state
which effectively overcome the limitation caused by aggregation-caused quenching(ACQ) effect. AIEgens have been extensively applied in food safety detection because of its unique "off-on" fluorescence
ignorable background fluorescence
large Stokers shift and excellent photostability. In this article
the applications of AIEgens sensors for pesticides
veterinary drugs
heavy metals
pathogens
food additives and the detection mechanisms were reviewed. Finally
the existing problems and future developments were also summarized and prospected.
聚集诱导发光食品安全荧光传感有害物检测
aggregation-induced emissionfood safetyfluorescence sensinghazards detection
WU Y N, LIU Y M, CHEN Q, et al. Surveillance for foodborne disease outbreaks in China,2003 to 2008 [J].Food Control, 2018,84:382-388.
KOTSANOPOULOS K V, ARVANITOYANNIS I S. The role of auditing,food safety,and food quality standards in the food industry:a review [J].Compr. Rev. Food Sci. Food Saf., 2017,16(5):760-775.
ZHANG Z, GODEFROY S B, LYU H, et al. Transformation of China's food safety standard setting system-review of 50 years of change,opportunities and challenges ahead [J].Food Control, 2018,93:106-111.
AUNG M M, CHANG Y S. Traceability in a food supply chain:safety and quality perspectives [J].Food Control, 2014,39:172-184.
MALIK A K, BLASCO C, PICÓ Y. Liquid chromatography-mass spectrometry in food safety [J].J. Chromatogr. A, 2010,1217(25):4018-4040.
PICÓ Y, FONT G, RUIZ M J, et al. Control of pesticide residues by liquid chromatography-mass spectrometry to ensure food safety [J].Mass Spectrom. Rev., 2006,25(6):917-960.
ESTEKI M, SIMAL-GANDARA J, SHAHSAVARI Z, et al. A review on the application of chromatographic methods,coupled to chemometrics,for food authentication [J].Food Control, 2018,93:165-182.
刘晓敏, 许秀丽, 聂雪梅, 等. 食品中化学性有害物的质谱软电离裂解规律及筛查技术研究进展 [J].色谱, 2020,38(7):750-758.
LIU X M, XU X L, NIE X M, et al. Research progress on the fragmentation mechanisms of mass spectrometry soft ionization and screening of chemical hazardous substances in food [J].Chin. J. Chromatogr., 2020,38(7):750-758. (in Chinese)
HATZAKIS E. Nuclear magnetic resonance (NMR) spectroscopy in food science:a comprehensive review [J].Compr. Rev. Food Sci. Food Saf., 2019,18(1):189-220.
MCMULLIN D, MIZAIKOFF B, KRSKA R. Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops [J].Anal. Bioanal. Chem., 2015,407(3):653-660.
MARTINS A R, TALHAVINI M, VIEIRA M L, et al. Discrimination of whisky brands and counterfeit identification by UV-Vis spectroscopy and multivariate data analysis [J].Food Chem., 2017,229:142-151.
HOYOS-ARBELÁEZ J, VÁZQUEZ M, CONTRERAS-CALDERÓN J. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages:a review [J].Food Chem., 2017,221:1371-1381.
SCOGNAMIGLIO V, ARDUINI F, PALLESCHI G, et al. Biosensing technology for sustainable food safety [J].TrAc Trends Anal. Chem., 2014,62:1-10.
杜斌, 童朝阳, 刘志伟, 等. 基于适配体-表面等离子共振的生物传感技术及应用 [J].发光学报, 2017,38(8):1039-1046.
DU B, TONG Z Y, LIU Z W, et al. Research and application of biosensing technology based on aptamer-surface plasmon resonance [J].Chin. J. Lumin., 2017,38(8):1039-1046. (in Chinese)
TRIPATHI P, UPADHYAY N, NARA S. Recent advancements in lateral flow immunoassays:a journey for toxin detection in food [J].Crit. Rev. Food Sci. Nutr., 2018,58(10):1715-1734.
BOUGADI E T, KALOGIANNI D P. Paper-based DNA biosensor for food authenticity testing [J].Food Chem., 2020,322:126758.
BURTSCHER C, WUERTZ S. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters [J].Appl. Environ. Microbiol., 2003,69(8):4618-4627.
ZHANG H Y, YANG S P, DE RUYCK K, et al. Fluorescence polarization assays for chemical contaminants in food and environmental analyses [J].TrAc Trends Anal. Chem., 2019,114:293-313.
SHEN Y M, YAN F M, HUANG X, et al. A new water-soluble and colorimetric fluorescent probe for highly sensitive detection of organophosphorus pesticides [J].RSC Adv., 2016,6(91):88096-88103.
YUE X Y, LIU L Z, LI Z H, et al. Highly specific and sensitive determination of propyl gallate in food by a novel fluorescence sensor [J].Food Chem., 2018,256:45-52.
HU X, MAO X X, ZHANG X D, et al. One-step synthesis of orange fluorescent copper nanoclusters for sensitive and selective sensing of Al3+ ions in food samples [J].Sens. Actuators B Chem., 2017,247:312-318.
ZHAO X Y, YANG D Q, PANG Y H, et al. Quaternary ammonium salt ion pair reagent sensitizing for determination of fluorescence whitening agent 85 in paper food packaging [J].Spectrochim. Acta A, 2020,231:118125.
李龙龙, 赵宁, 李冰, 等. 双氰基荧光染料的合成、光学性质及其生物成像 [J].发光学报, 2017,38(12):1575-1581.
LI L L, ZHAO N, LI B, et al. Synthesis,optical properties and biological imaging of a new two-photon fluorescence dye with dicyano-group [J].Chin. J. Lumin., 2017,38(12):1575-1581. (in Chinese)
程晓红, 阮志军, 钟志成, 等. 基于香豆素的荧光传感器及其对次氯酸根的快速检测 [J].发光学报, 2018,39(8):1182-1191.
CHENG X H, RUAN Z J, ZHONG Z C, et al. Rapid-responsive fluorescent probes based on coumarin dye for sensitive detection of hypochlorite [J].Chin. J. Lumin., 2018,39(8):1182-1191. (in Chinese)
GANDIOSO A, BRESOLI-OBACH R, NIN-HILL A, et al. Redesigning the coumarin scaffold into small bright fluorophores with far-red to near-infrared emission and large stokes shifts useful for cell imaging [J].J. Org. Chem., 2018,83(3):1185-1195.
TIAN X W, LI Z, PANG Y X, et al. Benzoyl peroxide detection in real samples and zebrafish imaging by a designed near-infrared fluorescent probe [J].J. Agric. Food Chem., 2017,65(43):9553-9558.
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J].Chem. Commun., 2001,(18):1740-1741.
MEI J, HONG Y N, LAM J W Y, et al. Aggregation-induced emission:the whole is more brilliant than the parts [J].Adv. Mater., 2014,26(31):5429-5479.
FU W, YAN C X, GUO Z Q, et al. Rational design of near-infrared aggregation-induced-emission-active probes:in situ mapping of amyloid-β plaques with ultrasensitivity and high-fidelity [J].J. Am. Chem. Soc., 2019,141(7):3171-3177.
KANG M M, ZHOU C C, WU S M, et al. Evaluation of structure-function relationships of aggregation-induced emission luminogens for simultaneous dual applications of specific discrimination and efficient photodynamic killing of gram-positive bacteria [J].J. Am. Chem. Soc., 2019,141(42):16781-16789.
GU X G, ZHANG X Y, MA H L, et al. Corannulene-incorporated AIE nanodots with highly suppressed nonradiative decay for boosted cancer phototheranostics in vivo[J].Adv. Mater., 2018,30(26):1801065-1-9.
WANG R C, DONG K K, XU G, et al. Activatable near-infrared emission-guided on-demand administration of photodynamic anticancer therapy with a theranostic nanoprobe [J].Chem. Sci., 2019,10(9):2785-2790.
秦安军, 胡蓉. 聚集诱导发光聚合物的机遇与挑战:聚合物之美与聚集体之光相辉映 [J].发光学报, 2020,41(9):1082-1086.
QIN A J, HU R. Prospect and challenge of polymers featuring aggregation-induced emission characteristics [J].Chin. J. Lumin., 2020,41(9):1082-1086. (in Chinese)
CAI Y, FANG J K, WANG B F, et al. A signal-on detection of organophosphorus pesticides by fluorescent probe based on aggregation-induced emission [J].Sens. Actuators B Chem., 2019,292:156-163.
NIU C X, LIU Q L, SHANG Z H, et al. Dual-emission fluorescent sensor based on AIE organic nanoparticles and Au nanoclusters for the detection of mercury and melamine [J].Nanoscale, 2015,7(18):8457-8465.
ZHOU C C, JIANG M J, DU J, et al. One stone,three birds:one AIEgen with three colors for fast differentiation of three pathogens [J].Chem. Sci., 2020,11(18):4730-4740.
ZHAO N, LI P F, ZHUANG J B, et al. Aggregation-induced emission luminogens with the capability of wide color tuning,mitochondrial and acterial maging,and photodynamic anticancer and antibacterial therapy [J].Appl. Mater. Interfaces, 2019,11(12):11227-11237.
XU L F, NI L, ZENG F, et al. Tetranitrile-anthracene as a probe for fluorescence detection of viscosity in fluid drinks via aggregation-induced emission [J].Analyst, 2020,145(3):844-850.
NIU G L, ZHANG R Y, SHI X J, et al. AIE luminogens as fluorescent bioprobes [J].TrAc Trends Anal. Chem., 2020,123:115769.
WANG D, TANG B Z. Aggregation-induced emission luminogens for activity-based sensing [J].Acc. Chem. Res., 2019,52(9):2559-2570.
SAMANTA S, HE Y, SHARMA A, et al. Fluorescent probes for nanoscopic imaging of mitochondria [J].Chem, 2019,5(7):1697-1726.
HUANG X L, GUO Q, ZHANG R Y, et al. AIEgens:an emerging fluorescent sensing tool to aid food safety and quality control [J].Compr. Rev. Food Sci., 2020,19(4):2297-2329.
KUSHWAHA M, VERMA S, CHATTERJEE S. Profenofos,an acetylcholinesterase-inhibiting organophosphorus pesticide:a short review of its usage,toxicity,and biodegradation [J].J. Environ. Qual., 2016,45(5):1478-1489.
FAHIMI-KASHANI N, HORMOZI-NEZHAD M R. Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides [J].Anal. Chem., 2016,88(16):8099-8106.
葛学峰, 吴彦玮, 赵志敏. 荧光光谱法检测蜂蜜中腐霉利农药的含量 [J].发光学报, 2017,38(7):973-977.
GE X F, WU Y W, ZHAO Z M. Deteramination of procymidone residues content in honey by fluorescence spectroscopy [J].Chin. J. Lumin., 2017,38(7):973-977. (in Chinese)
吉海彦, 任占奇, 饶震红. 高光谱成像技术鉴别菠菜叶片农药残留种类 [J].发光学报, 2018,39(12):1778-1784.
JI H Y, REN Z Q, RAO Z H. Identification of pesticide residue types in spinach leaves based on hyperspectral imaging [J].Chin. J. Lumin., 2018,39(12):1778-1784. (in Chinese)
FENG G X, TAY C Y, CHUI Q X, et al. Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking [J].Biomaterials, 2014,35(30):8669-8677.
CHEN J L, CHEN X J, HUANG Q Y, et al. Amphiphilic polymer-mediated aggregation-induced emission nanoparticles for highly sensitive organophosphorus pesticide biosensing [J].ACS Appl. Mater. Interfaces, 2019,11(36):32689-32696.
WU X L, WANG P S, HOU S Y, et al. Fluorescence sensor for facile and visual detection of organophosphorus pesticides using AIE fluorogens-SiO2-MnO2 sandwich nanocomposites [J].Talanta, 2019,198:8-14.
WANG J Y, ZHANG J Y, WANG J, et al. Fluorescent peptide probes for organophosphorus pesticides detection [J].J. Hazard. Mater., 2020,389:122074.
BAYNES R E, DEDONDER K, KISSELL L, et al. Health concerns and management of select veterinary drug residues [J].Food Chem. Toxicol., 2016,88:112-122.
ZHANG S, MA L, MA K, et al. Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide [J].ACS Omega, 2018,3(10):12886-12892.
YU L, CHEN H X, YUE J, et al. Metal-organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection [J].Anal. Chem., 2019,91(9):5913-5921.
崔廷婷, 冯才伟, 吴小胜, 等. 金刚烷胺残留化学发光酶免疫法的建立 [J].食品工业科技, 2019,40(14):275-279.
CUI T T, FENG C W, WU X S, et al. Establishment of chemiluminescent enzyme immunoassay for determination of amantadine residues [J].Sci. Technol. Food Ind., 2019,40(14):275-279. (in Chinese)
YU W B, LI Y, XIE B, et al. An aggregation-induced emission-based indirect competitive immunoassay for fluorescence “turn-on” detection of drug residues in foodstuffs [J].Front. Chem., 2019,7:228-1-7.
KUMARI N, JHA S, MISRA S K, et al. A probe for the selective and parts-per-billion-level detection of copper(Ⅱ) and mercury(Ⅱ) using a micellar medium and its utility in cell imaging [J].Chempluschem, 2014,79(7):1059-1064.
赵海燕. 食品中重金属污染、危害及研究危害及对策分析 [J].食品安全导刊, 2020(15):25.
ZHAO H Y. Establishment of chemiluminescent enzyme immunoassay for determination of amantadine residues [J].China Food Saf. Mag., 2020(15):25. (in Chinese)
MA J, XIAO Y, ZHANG C H, et al. Preparation a novel pyrene-based AIE-active ratiometric turn-on fluorescent probe for highly selective and sensitive detection of Hg2+[J].Mater. Sci. Eng. B, 2020,259:114582.
GAO T, HUANG X Y, HUANG S, et al. Sensitive water-soluble fluorescent probe based on umpolung and aggregation-induced emission strategies for selective detection of Hg2+ in living cells and zebrafish [J].J. Agric. Food Chem., 2019,67(8):2377-2383.
HUANG L T, LI S W, LING X, et al. Dual detection of bioaccumulated Hg2+ based on luminescent bacteria and aggregation-induced emission [J].Chem. Commun., 2019,55(52):7458-7461.
PATHAN S, JALAL M, PRASAD S, et al. Aggregation-induced enhanced photoluminescence in magnetic graphene oxide quantum dots as a fluorescence probe for As(Ⅲ) sensing [J].J. Mater. Chem. A, 2019,7(14):8510-8520.
ZHANG L F, HU W P, YU L P, et al. Click synthesis of a novel triazole bridged AIE active cyclodextrin probe for specific detection of Cd2+[J].Chem. Commun., 2015,51(20):4298-4301.
XU L L, CHEN P, LIU T, et al. A novel sensitive visual count card for detection of hygiene bio-indicator-molds and yeasts in contaminated food [J].LWT, 2020,117:108687.
YANG S C, LIN C H, ALJUFFALI I A, et al. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development [J].Arch. Microbiol., 2017,199(6):811-825.
SAXENA T, KAUSHIK P, MOHAN M K. Prevalence of E. Coli O157∶H7 in water sources:an overview on associated diseases,outbreaks and detection methods [J].Diagn. Microbiol. Infect. Dis., 2015,82(3):249-264.
HAMIDIYAN N, SALEHI-ABARGOUEI A, REZAEI Z, et al. The prevalence of Listeria spp. food contamination in Iran:a systematic review and meta-analysis [J].Food Res. Int., 2018,107:437-450.
DONG Z Z, WANG Y D, WANG C L, et al. Cationic peptidopolysaccharide with an intrinsic AIE effect for combating bacteria and multicolor imaging [J].Adv. Healthc. Mater., 2020,9(13):2000419.
GAO M, HU Q L, FENG G X, et al. A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells [J].Adv. Healthc. Mater., 2015,4(5):659-663.
FENG G X, YUAN Y Y, FANG H, et al. A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging,naked-eye detection and photodynamic killing of gram-positive bacteria [J].Chem. Commun., 2015,51(62):12490-12493.
HE X W, YANG Y J, GUO Y C, et al. Phage-guided targeting,discriminative imaging,and synergistic killing of bacteria by AIE bioconjugates [J].J. Am. Chem. Soc., 2020,142(8):3959-3969.
WEI X H, WU Q O, FENG Y, et al. Off-on fluorogenic substrate harnessing ESIPT and AIE features for in situ and long-term tracking of β-glucuronidase in Escherichia coli[J].Sens. Actuators B Chem., 2020,304:127242.
ROMPRÉ A, SERVAIS P, BAUDART J, et al. Detection and enumeration of coliforms in drinking water:current methods and emerging approaches [J].J. Microbiol. Methods, 2002,49(1):31-54.
MANAFI M. New developments in chromogenic and fluorogenic culture media [J].Int. J. Food Microbiol., 2000,60(2-3):205-218.
ZHANG G G, XU S L, XIONG Y H, et al. Ultrabright fluorescent microsphere and its novel application for improving the sensitivity of immunochromatographic assay [J].Biosens. Bioelectron., 2019,135:173-180.
KONG T T, ZHAO Z, LI Y, et al. Detecting live bacteria instantly utilizing AIE strategies [J].J. Mater. Chem. B, 2018,6(37):5986-5991.
BAI H T, CHEN H, HU R, et al. Supramolecular conjugated polymer materials for in situ pathogen detection [J].ACS Appl. Mater. Interfaces, 2016,8(46):31550-31557.
WANG Y, CORBITT T S, JETT S D, et al. Direct visualization of bactericidal action of cationic conjugated polyelectrolytes and oligomers [J].Langmuir, 2012,28(1):65-70.
YUAN H X, LIU Z, LIU L B, et al. Cationic conjugated polymers for discrimination of microbial pathogens [J].Adv. Mater., 2014,26(25):4333-4338.
HU R, ZHOU F, ZHOU T T, et al. Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AIEgen [J].Biomaterials, 2018,187:47-54.
LIESE D, HABERHAUER G. Rotations in excited ICT states-fluorescence and its microenvironmental sensitivity [J].Isr. J. Chem., 2018,58(8):813-826.
AI K L, LIU Y L, LU L H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula [J].J. Am. Chem. Soc., 2009,131(27):9496-9497.
苏安梅, 余姝轶, 覃秀, 等. 基于碳量子点荧光恢复的三聚氰胺测定方法 [J].发光学报, 2017,38(7):967-972.
SU A M, YU S Y, QIN X, et al. Determination of melamine based on fluorescence recovery of carbon quantum dots [J].Chin. J. Lumin., 2017,38(7):967-972. (in Chinese)
THALER S, HARITOGLOU C, CHORAGIEWICZ T J, et al. In vivo toxicity study of Rhodamine 6G in the rat retina [J].Invest. Ophthalmol. Vis. Sci., 2008,49(5):2120-2126.
LI Y Y, HE W Y, PENG Q C, et al. Aggregation-induced emission luminogen based molecularly imprinted ratiometric fluorescence sensor for the detection of Rhodamine 6G in food samples [J].Food Chem., 2019,287:55-60.
LI Y Y, HOU L Y, SHAN F J, et al. A novel aggregation-induced emission luminogen based molecularly imprinted fluorescence sensor for ratiometric determination of Rhodamine B in food samples [J].ChemistrySelect, 2019,4(38):11256-11261.
FLETCHER B, MULLANE K, PLATTS P, et al. Advances in meat spoilage detection:a short focus on rapid methods and technologies [J].CyTA J. Food, 2018,16(1):1037-1044.
ODEYEMI O A, ALEGBELEYE O O, STRATEVA M, et al. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin [J].Compr. Rev. Food Sci., 2020,19(2):311-331.
杨春婷, 赵晓娟, 白卫东. 肉类中的生物胺形成及其在肉类新鲜度评价中的应用研究进展 [J].肉类研究, 2017,31(1):55-59.
YANG C T, ZHAO X J, BAI W D. Formation of biogenic amines during meat storage and their application in assessment of meat freshness [J].Meat Res., 2017,31(1):55-59. (in Chinese)
POGHOSSIAN A, GEISSLER H, SCHÖNING M J. Rapid methods and sensors for milk quality monitoring and spoilage detection [J].Biosens. Bioelectron., 2019,140:111272.
HAN J Q, LI Y P, YUAN J, et al. To direct the self-assembly of AIEgens by three-gear switch:morphology study,amine sensing and assessment of meat spoilage [J].Sensors Actuat. B Chem., 2018,258:373-380.
HOU J D, DU J R, HOU Y, et al. Effect of substituent position on aggregation-induced emission,customized self-assembly,and amine detection of donor-acceptor isomers:implication for meat spoilage monitoring [J].Spectrochim. Acta A, 2018,205:1-11.
HAN A L, XIONG L, HAO S J, et al. Highly bright self-assembled copper nanoclusters:a novel photoluminescent probe for sensitive detection of histamine [J].Anal. Chem., 2018,90(15):9060-9067.
GHASEMI-VARNAMKHASTI M, APETREI C, LOZANO J, et al. Potential use of electronic noses,electronic tongues and biosensors as multisensor systems for spoilage examination in foods [J].Trends Food Sci. Technol., 2018,80:71-92.
HACK D M, JRBORDI P L, JRHESSERT S W. Nutrition,sensory evaluation,and performance analysis of hydrogenated frying oils [J].Int. J. Food Sci. Nutr., 2009,60(8):647-661.
STIER R F. Ensuring the health and safety of fried foods [J].Eur. J. Lipid Sci. Technol., 2013,115(8):956-964.
WU Y, JIN P W, GU K Z, et al. Broadening AIEgen application:rapid and portable sensing of foodstuff hazards in deep-frying oil [J].Chem. Commun., 2019,55(28):4087-4090.
CUI S Q, WANG B W, YAN X L, et al. A novel emitter:sensing mechanical stimuli and monitoring total polar materials in frying oil [J].Dyes Pigm., 2020,174:108020.
NI J S, MIN T L, LI Y X, et al. Planar AIEgens with enhanced solid-state luminescence and ROS generation for multidrug-resistant bacteria treatment [J].Angew. Chem. Int. Ed., 2020,59(25):10179-10185.
0
浏览量
1073
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构