浏览全部资源
扫码关注微信
1.吉林大学 白求恩第一医院, 吉林 长春 130021
2.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
3.阿姆斯特丹大学 范德霍夫分子科学研究所, 荷兰 阿姆斯特丹 1098 XH
[ "李晓丹(1981-), 女, 吉林榆树人, 博士, 主治医师, 2017年于吉林大学获得博士学位, 主要从事基于纳米光子学的医学诊治方法学的研究。E-mail:ddjy@jlu.edu.cn" ]
[ "张俐(1981-), 女, 吉林蛟河人, 博士, 主治医师, 2019年于吉林大学获得博士学位, 主要从事基于纳米光子学的医学诊治方法学的研究。E-mail:zhangli66@jlu.edu.cn" ]
[ "赵慧颖(1961-), 女, 吉林长春人, 博士, 教授, 2000年于日本九州大学获得博士学位, 主要从事高血压、动脉粥样硬化的临床及基础研究。E-mail:hui_ying@jlu.edu.cn" ]
[ "李齐清(1990-), 男, 福建福州人, 博士, 2018年于中国科学院大学获得博士学位, 主要从事稀土掺杂上转换纳米发光材料的研究。E-mail:liqiqing0742@sina.cn" ]
纸质出版日期:2021-2,
收稿日期:2020-12-12,
录用日期:2021-1-5
扫 描 看 全 文
李晓丹, 张俐, 赵慧颖, 等. 纳米NaYb1-
Xiao-dan LI, Li ZHANG, Hui-ying ZHAO, et al. Phase Transition and Luminescence Enhancement Induced by Er3+/Yb3+ Doping Ratio Change in Nano NaYb1-
李晓丹, 张俐, 赵慧颖, 等. 纳米NaYb1-
Xiao-dan LI, Li ZHANG, Hui-ying ZHAO, et al. Phase Transition and Luminescence Enhancement Induced by Er3+/Yb3+ Doping Ratio Change in Nano NaYb1-
在Yb
3+
和Er
3+
共掺杂氟化物纳米体系中,2% Er
3+
掺杂浓度为上转换发光的最佳浓度,高于这个浓度,随着Er
3+
掺杂浓度的增加,将发生严重上转换发光浓度猝灭,已为人们广泛认知和接受。本文合成了不同Er
3+
/Yb
3+
掺杂浓度比的NaYb
1-
x
F
4
:Er
x
3+
系列上转换发光纳米粒子。通过扫描电镜、XRD和荧光光谱等分析方法对这些合成的样品进行了表征。研究结果表明,当Er
3+
/Yb
3+
掺杂浓度比在0.02/0.98~0.2/0.8和0.6/0.4~0.8/0.2范围时,合成的NaYb
1-
x
F
4
:Er
x
3+
纳米粒子分别为α相和β相结构;而特别值得注意的是,当掺杂浓度比在0.3/0.7~0.4/0.6范围时,合成的纳米粒子为从α相向β相过渡的α相和β相共存相结构。Er
3+
/Yb
3+
最佳掺杂浓度比分别为0.02/0.98和0.4/0.6的两种α相和β相共存相结构的纳米粒子都展现了非常好的上转换发光增强。这些结果对于理解稀土离子浓度发光猝灭机制,提高上转换发光效率,促进稀土纳米发光材料在新型光源、生物医学和激光等领域的应用都具有重要的科学研究意义和启发作用。
It was well known that 2% Er
3+
of the doping concentration is optimal in the fluorides nanostructures co-doped with Yb
3+
and Er
3+
for boosting upconversion luminescence. Herein
a series of NaYb
1-
x
F
4
:Er
x
3+
upconversion nanoparticles were synthesized with different Er
3+
/Yb
3+
doping ratio
which were analyzed and characterized by SEM
XRD and spectroscopy. It was shown that the two doping ratio of Er
3+
/Yb
3+
i. e
. 0.02/0.98 and 0.4/0.6
are the most favorable for upconversion luminescence of the as-synthesized nanoparticles. The XRD reveals that the as-synthesized series of nanoparticles show three phase structures
one α phase for 0.02/0.98~0.2/0.8 of the Er
3+
/Yb
3+
doping ratios
i.e
. the other β phase for 0.6/0.4~0.8/0.2
and the third coexisting phase consisting of α phase and β phase for 0.3/0.7~0.4/0.6
respectively. These results can be useful in promoting the development of biomedical
solar and laser applications.
氟化物纳米粒子Yb3+和Er3+共掺杂最佳浓度相变上转换发光
fluoride nanoparticlesco-doping with Yb3+ and Er3+optimal concentration ratiophase transitionupconversion luminescence
LI X D, TANG Y, XU L L, et al.. Dependence between cytotoxicity and dynamic subcellular localization of up-conversion nanoparticles with different surface charges[J].RSC Adv., 2017, 7(53):33502-33509.
CHEN G Y, QIU H L, PRASAD P N, et al.. Upconversion nanoparticles:design, nanochemistry, and applications in theranostics[J].Chem. Rev., 2014, 114(10):5161-5214.
CHIEN Y H, CHAN K K, YAP S H K, et al.. NIR-responsive nanomaterials and their applications; upconversion nanoparticles and carbon dots:a perspective[J].J. Chem. Technol. Biotechnol., 2018, 93:1519-1528.
周进, 张美玲, 张俐, 等.基于近红外上转换纳米探针的固相免疫检测研究[J].发光学报, 2018, 39(8):1059-1065.
ZHOU J, ZHANG M L, ZHANG L, et al.. Studies of solid phase immunoassay based on near infrared upconversion nanoprobe[J].Chin. J. Lumin., 2018, 39(8):1059-1065. (in Chinese)
BOYER J C, VAN VEGGEL F C J M. Absolute quantum yield measurements of colloidal NaYF4:Er3+, Yb3+ upconverting nanoparticles[J].Nanoscale, 2010, 2(8):1417-1419.
王丹, 薛彬, 涂浪平, 等.染料敏化增强Ho3+单带上转换红光[J].发光学报, 2020, 41(9):1114-1121.
WANG D, XUE B, TU L P, et al.. Enhancing single-band red upconversion luminescence of Ho3+ through dye-sensitization[J].Chin. J. Lumin., 2020, 41(9):1114-1121. (in Chinese)
花景田, 陈宝玖, 孙佳石, 等.稀土掺杂材料的上转换发光[J].中国光学与应用光学, 2010, 3(4):301-309.
HUA J T, CHEN B J, SUN J S, et al.. Introduction to up-conversion luminescence of rare earth doped materials[J].Chin. J. Opt. Appl. Opt., 2010, 3(4):301-309. (in Chinese)
凌枭, 梅青松.单一稀土激活剂离子的正交上转换发光特性[J].中国光学, 2020, 13(5):1158-1170.
LING X, MEI Q S. Orthogonal luminescence properties of a single rare-earth activator ion doped upconversion nanoparticles[J].Chin. Opt., 2020, 13(5):1158-1170. (in Chinese)
DAMASCO J A, CHEN G Y, SHAO W, et al.. Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging[J].ACS Appl. Mater. Interfaces, 2014, 6(16):13884-13893.
TIAN G, ZHENG X P, ZHANG X, et al.. TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance[J].Biomaterials, 2015, 40:107-116.
CHEN B, KONG W, WANG N, et al.. Oleylamine-mediated synthesis of small NaYbF4 nanoparticles with tunable size[J].Chem. Mater., 2019, 31(13):4779-4786.
KLIER D T, KUMKE M U. Upconversion NaYF4:Yb:Er nanoparticles co-doped with Gd3+ and Nd3+ for thermometry on the nanoscale[J].RSC Adv., 2015, 5(82):67149-67156.
JIN L M, CHEN X, SIU C K, et al.. Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core-shell nanoparticles via the use of laser cavity[J].ACS Nano, 2017, 11(1):843-849.
ZUO J, SUN D P, TU L P, et al.. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures[J].Angew. Chem. Int. Ed., 2018, 57(12):3054-3058.
于海洋, 涂浪平, 张友林, 等.溶剂中稀土上转换纳米粒子表面猝灭效应的定量分析[J].中国光学, 2019, 12(6):1288-1294.
YU H Y, TU L P, ZHANG Y L, et al.. Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents[J].Chin. Opt., 2019, 12(6):1288-1294. (in Chinese)
ZUO J, TU L P, LI Q Q, et al.. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided "off-on" therapy[J].ACS Nano, 2018, 12(4):3217-3225.
GUNASEELAN M, YAMINI S, KUMAR G A, et al.. Reverse microemulsion synthesis of mixed α and β phase NaYF4:Yb, Er nanoparticles:calcination induced phase formation, morphology, and upconversion emission[J].J. Sol-Gel Sci. Technol., 2020, 96(3):550-563.
ZUO J, LI Q Q, XUE B, et al.. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure[J].Nanoscale, 2017, 9(23):7941-7946.
0
浏览量
94
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构