浏览全部资源
扫码关注微信
中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
[ "刘春旭(1973-), 女, 吉林公主岭人, 博士, 副研究员, 2001年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事纳米材料的光物理的研究。E-mail:cxliu@ciomp.ac.cn" ]
[ "宋悦(1989-), 女, 吉林松原人, 博士, 2019年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事大功率半导体激光器的研究。E-mail:songyue@ciomp.ac.cn" ]
[ "王立军(1946-), 男, 吉林舒兰人, 硕士, 研究员, 博士研究生导师, 中国科学院院士, 1982年于吉林大学获得硕士学位, 主要从事激光技术等领域的基础及应用的研究。E-mail:ljwang2013ys@163.com" ]
纸质出版日期:2021-02,
收稿日期:2020-12-07,
录用日期:2021-1-7
移动端阅览
刘春旭, 张继森, 陈泳屹, 等. CsPbBr3光波导中激子局域场和复合速率的增强[J]. 发光学报, 2021,42(2):195-200.
CHUN-XU LIU, JI-SEN ZHANG, YONG-YI CHEN, et al. Localized Field and Recombination Rate Enhancement of Excitons in CsPbBr3 Optical Waveguide. [J]. Chinese journal of luminescence, 2021, 42(2): 195-200.
刘春旭, 张继森, 陈泳屹, 等. CsPbBr3光波导中激子局域场和复合速率的增强[J]. 发光学报, 2021,42(2):195-200. DOI: 10.37188/CJL.20200375.
CHUN-XU LIU, JI-SEN ZHANG, YONG-YI CHEN, et al. Localized Field and Recombination Rate Enhancement of Excitons in CsPbBr3 Optical Waveguide. [J]. Chinese journal of luminescence, 2021, 42(2): 195-200. DOI: 10.37188/CJL.20200375.
将银膜和聚甲基丙烯酸甲酯(PMMA)及高增益的钙钛矿CsPbBr
3
集成一个平面光波导,通过对体系的物理机理和光学特性研究,探索等离子体结构新应用的可能。实验结果表明,随着体系结构的改变,特别是对PMMA厚度的调制,发现局域在银膜和钙钛矿CsPbBr
3
界面电磁场增强,使得CsPbBr
3
激子的发光和辐射速率(
Γ
=
τ
-1
)增强。我们用双指数衰减和描述系综衰减的延展模型分别进行了讨论,发现二者有较大的差别。采用双指数衰减拟合求寿命没考虑系综的限域效应和银/CsPbBr
3
界面上传播表面等离极化激元(SPPs)引起的局域场增强,所以在自由空间拟合得到的平均荧光寿命
τ
avg
在30~25 ns范围,与先前报道结果接近。而用系综衰减的延展模型得到
τ
avg
在12~9 ns范围,荧光寿命显著变小即辐射速率增强。上述研究对开发表面等离激元发光显示器件和光物理基础研究提供了依据。
In this paper
Ag
PMMA and perovskite CsPbBr
3
films have been integrated into a plane waveguides to explore the optical physical mechanism and new application of plasmon structure. It is shown that the localized field on the Ag/perovskite CsPbBr
3
interface has been increased giving rise to PL and radiative ratio(
Γ
=
τ
-1
) enhancement of CsPbBr
3
excitons as varying system structures
especially modifying the thickness of PMMA. Decay curves have been fitted by both two exponential and ensemble stretched functions
respectively. It is found that there is big fitting discrepancy. Without considering the localized field enhancement on the Ag/CsPbBr
3
interface
the fit results(
τ
avg
30~25 ns) by two exponential form are similar to the results in free space reported previously. The PL lifetime shortening(
τ
avg
12~9 ns)
or radiative rate increasing have been found by the latter fitting. The above-mentioned investigations can provide the basis for optical physical fundamental research and design and developing of surface plasmon polaritons(SPPs) luminescence-display devices.
钙钛矿CsPbBr3表面等离子体光波导局域场增强
perovskite CsPbBr3surface plasmonoptical waveguideenhancement of localized field
MAIER S A. Plasmonics:Fundamentals and Applications [M]. New York:Springer, 2007.
PILIARIK M, HOMOLA J. Surface plasmon resonance(SPR) sensors:approaching their limits?[J].Opt. Express, 2009, 17(19):16505-16517.
刘春旭, 张继森, 陈泳屹, 等. CsPbBr3钙钛矿/Pt杂化纳米结构中等离激元-激子耦合引起的发光猝灭和辐射速率减小[J].发光学报, 2017, 38(12):1597-1604.
LIU C X, ZHANG J S, CHEN Y Y, et al.. Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/ptnanostructure[J].Chin. J. Lumin., 2017, 38(12):1597-1604. (in Chinese)
杨振岭, 方伟, 杨延强.激发光的表面等离激元增强效应导致的双光子荧光增强[J].发光学报, 2013, 34(2):240-244.
YANG Z L, FANG W, YANG Y Q. Two-photon-excited fluorescence enhancement caused by surface plasmon enhanced exciting light[J].Chin. J. Lumin., 2013, 34(2):240-244. (in English
王浩冰, 陶金, 吕金光, 等.局域表面等离激元共振增强硅蓝光波段吸收特性研究[J].中国光学, 2020, 13(6):1362-1384.
WANG H B, TAO J, LV J G, et al.. Absorption enhancement of silicon via localized surface plasmonsresonance in blue band[J].Chin. Opt., 2020, 13(6):1362-1384. (in English
陈泳屹, 佟存柱, 秦莉, 等.表面等离子体激元纳米激光器技术及应用研究进展[J].中国光学, 2012, 5(5):453-463.
CHEN Y Y, TONG C Z, QIN L, et al.. Progress in surface plasmon polaritonnano-laser technologies and applications[J].Chin. Opt., 2012, 5(5):453-463. (in Chinese)
计吉焘, 翟雨生, 吴志鹏, 等.基于周期性光栅结构的表面等离激元探测[J].光学精密工程, 2020, 28(3):526-534.
JI J T, ZHAI Y S, WU Z P, et al..Detection of surface plasmons based on periodic grating structure[J].Opt. Precision Eng., 2020, 28(3):526-534. (in Chinese)
BERGMAN D J, STOCKMAN M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J].Phys. Rev. Lett., 2003, 90(2):027402-1-4.
SULLIVAN K G, HALL D G.Enhancement and inhibition of electromagnetic radiation in plane-layered media. Ⅱ. Enhanced fluorescence in optical waveguide sensors[J].J. Opt. Soc. Am. B, 1997, 14(5):1160-1166.
DE LEON I, BERINI P. Modeling surface plasmon-polariton gain in planar metallic structures[J].Opt. Express, 2009, 17(22):20191-20202.
NORDLANDER P, LE F. Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system[J].Appl. Phys. B, 2006, 84(1-2):35-41.
LI X H, ZHU J M, WEI B Q. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications[J].Chem. Soc. Rev., 2016, 45(11):3145-3187.
NOGINOV M A, ZHU G, BELGRAVE A M, et al.. Demonstration of a spaser-based nanolaser[J].Nature, 2009, 460(7259):1110-1112.
张宗涛, 赵斌, 胡黎明, 等.化学还原法制备纳米级Ag粉高分子保护机理研究[J].化学学报, 1996, 54(4):379-384.
ZHANG Z T, ZHAO B, HU L M, et al.. Polymer protective mechanism of nanometer silver powder prepared by chemical reduction method[J].Acta Chimica Sinica, 1996, 54(4):379-384. (in Chinese)
LI X M, WU Y, ZHANG S L, et al.. CsPbX3 quantum dots for lighting and displays:room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J].Adv. Funct. Mater., 2016, 26(15):2435-2445.
SUN S B, YUAN D, XU Y, et al.. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature[J].ACS Nano, 2016, 10(3):3648-3657.
LIMPENS R, GREGORKIEWICZ T. Spectroscopic investigations of dark Si nanocrystals in SiO2 and their role in external quantum efficiency quenching[J].J. Appl. Phys., 2013, 114(7):074304-1-7.
DEY A, RATHOD P, KABRA D. Role of localized states in photoluminescence dynamics of high optical gain CsPbBr3 nanocrystals[J].Adv. Opt. Mater., 2018, 6(11):1800109.
AVRUTSKY I. Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain[J].Phys. Rev. B, 2004, 70(15):155416-1-6.
0
浏览量
150
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构