浏览全部资源
扫码关注微信
1.陕西科技大学 电子信息与人工智能学院, 陕西 西安 710021
2.江苏集萃有机光电技术研究所有限公司, 江苏 苏州 215215
[ "丁磊(1985-), 男, 陕西咸阳人, 博士, 副教授, 硕士研究生导师, 2015年于苏州大学获得博士学位, 2017年在苏州大学从事博士后研究, 主要从事OPV和钙钛矿电池、OLED照明、OLED微型显示器的研究。E-mail:dinglei@sust.edu.cn" ]
纸质出版日期:2021-02,
收稿日期:2020-11-10,
录用日期:2020-12-15
移动端阅览
丁磊, 佛婉贞, 董豪杰. 基于新型复合传输层的有机太阳能电池模组器件[J]. 发光学报, 2021,42(2):231-240.
LEI DING, WAN-ZHEN FO, HAO-JIE DONG. Organic Solar Cell Module Device Based on A Novel Composite Transport Layer. [J]. Chinese journal of luminescence, 2021, 42(2): 231-240.
丁磊, 佛婉贞, 董豪杰. 基于新型复合传输层的有机太阳能电池模组器件[J]. 发光学报, 2021,42(2):231-240. DOI: 10.37188/CJL.20200344.
LEI DING, WAN-ZHEN FO, HAO-JIE DONG. Organic Solar Cell Module Device Based on A Novel Composite Transport Layer. [J]. Chinese journal of luminescence, 2021, 42(2): 231-240. DOI: 10.37188/CJL.20200344.
通过刮涂制备薄膜衬底和真空蒸镀有机小分子材料来构筑复合界面传输层,制备了大面积有机太阳能电池模组器件。通过透射光谱、传输层粗糙度形貌、表面浸润性、不同衬底的光吸收层粗糙度形貌、刮涂的均匀性研究了同传输层对OSCs器件性能的影响。实验结果表明,当在AZO衬底表面蒸镀一层电子致密层时,即新型复合传输层并未影响基片在300~900 nm范围内的透过率,并且BPhen电子致密层可以有效地提高基片表面的平整度和浸润性,这也有利于后续光吸收层溶液的刮涂,提高涂膜的质量和稳定性。通过不同基底刮涂光吸收层薄膜表面粗糙度以及形貌图,其新型复合传输层作为衬底刮涂出的光吸收层薄膜的表面粗糙度有了明显的降低,表明平整的基底有利于刮涂出表面均一的薄膜。由此制备的基于新型复合传输层的刚性、柔性模组器件的开路电压(
V
oc
)、短路电流密度(
J
sc
)和填充因子(FF)都有大幅度的提高。最终制备的新型刚性模组器件光电转化效率(PCE)提高到10.62%,提升了约13%;柔性模组器件的光电转化效率(PCE)达到5.13%,提升了32%。
Based on a new composite interface transport layer
large-area organic solar cell module was fabricated by vacuum evaporation of organic small molecular materials. According to the transmittance spectrum
surface roughness morphology and surface wettability of transport layer
the surface roughness of active layers based on different substrates
the uniformity of blade coating and the influence of different transport layers on the performance of organic solar cells were analyzed. The experimental results show that when the electronic dense layer of 4
7-diphenyl-1
10-phenanthroline(BPhen) acetylimide is deposited on the surface of aluminum-doped zinc oxide substrate
the new composite transport layer is formed
which does not affect the light transmittance of the substrate in the range of 300-900 nm. In addition
the electron dense layer of BPhen can effectively improve the flatness and wettability of the substrate surface
which is beneficial to the subsequent scraping of the active layer solution and improves the quality and the stability of the coating film. By analyzing the surface roughness and three-dimensional morphology of the active layer film coated on different substrates
the surface roughness of the active layer film coated on the AZO(Al doped ZnO)/BPhen new composite transport layer was significantly reduced. It means that the new composite transport layer as substrate is beneficial to scrape out a uniform active layer film. As a result
the open circuit voltage(
V
oc
)
short-circuit current density(
J
sc
) and fill factor(FF) of rigid and flexible module device are significantly improved
and the power conversion efficiency(PCE) of the new rigid modular device is increased to 10.62%
which is about 13% higher than stand device. Importantly
the PCE of the flexible module device reaches 5.13%
which is also approximately 32% higher than AZO-based device.
新型复合传输层有机太阳能电池模组电子致密层
new composite transport layerorganic solar cell moduleelectron dense layer
FUKUDA K, YU K, SOMEYA T. The future of flexible organic solar cells[J].Adv. Energy Mater., 2020, 10(25):2000765.
ZHAO F W, WANG C R, ZHAN X W. Morphology control in organic solar cells[J].Adv. Energy Mater., 2018, 8(28):1703147.
LIU D Y, WANG J Y, GU C Y, et al.. Stirring up acceptor phase and controlling morphology via choosing appropriate rigid aryl rings as lever arms in symmetry-breaking benzodithiophene for high-performance fullerene and fullerene-free polymer solar cells[J].Adv. Mater., 2018, 30(8):1705870.
GAO K, DENG W Y, XIAO L G, et al.. New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing[J].Nano Energy, 2016, 30:639-648.
OSTROVERKHOVA O. Organic optoelectronic materials:mechanisms and applications[J].Chem. Rev., 2016, 116(22):13279-13412.
CHEN J D, LI Y Q, ZHU J S, et al.. Polymer solar cells with 90% external quantum efficiency featuring an ideal light-and charge-manipulation layer[J].Adv. Mater., 2018, 30(13):1706083-1-8.
CUI M Q, LI D, DU X Y, et al.. A cost-effective, aqueous-solution-processed cathode interlayer based on organosilica nanodots for highly efficient and stable organic solar cells[J].Adv. Mater., 2020, 32(38):2002973-1-8.
SONG J L, LI C, ZHU L, et al.. Ternary organic solar cells with efficiency >16.5% based on two compatible nonfullerene acceptors[J]. Adv. Mater., 2019, 31(52):1905645.
JIANG K, WEI Q Y, LAI J Y L, et al.. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells[J].Joule, 2019, 3(12):3020-3033.
CUI Y, YAO H F, ZHANG J Q, et al.. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages[J].Nat. Commun., 2019, 10(1):2515-1-8.
LI K, WU Y S, TANG Y B, et al.. Ternary blended fullerene-free polymer solar cells with 16.5% efficiency enabled with a higher-LUMO-level acceptor to improve film morphology[J].Adv. Energy Mater., 2019, 9(33):1901728.
PAN M A, LAU T K, TANG Y B, et al.. 16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity[J].J. Mater. Chem. A, 2019, 7(36):20713-20722.
SUN H L, LIU T, YU J W, et al.. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency[J].Energy Environ. Sci., 2019, 12(11):3328-3337.
WANG D, QIN R, ZHOU G Q, et al.. High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions[J].Adv. Mater., 2020, 32(32):2001621-1-8.
WANG Y F, JIA B Y, WANG J, et al.. High-efficiency perovskite quantum dot hybrid nonfullerene organic solar cells with near-zero driving force[J].Adv. Mater., 2020, 32(29):2002066.
CHEN H Z, ZHAN L L, LI S X, et al.. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model[J].Energy Environ. Sci., 2020, 13(2):635-645.
WANG T, SUN R, SHI M M, et al.. Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach[J].Adv. Energy Mater., 2020, 10(22):2000590.
ZHANG L, XU X B, LIN B J, et al.. Achieving balanced crystallinity of donor and acceptor by combining blade-coating and ternary strategies in organic solar cells[J].Adv. Mater., 2018, 30(51):1805041.
OH S, SONG C E, LEE T, et al.. Enhanced efficiency and stability of PTB7-Th-based multi-non-fullerene solar cells enabled by the coexisting working mechanism of the alloy-like and energy transfer model[J].J. Mater. Chem. A, 2019, 7(38):22044-22053.
ZHAO W C, ZHANG S Q, ZHANG Y, et al.. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method[J].Adv. Mater., 2018, 30(4):1704837-1-7.
LEE J, SEO Y H, KWON S N, et al.. Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency[J].Adv. Energy Mater., 2019, 9(36):1901805.
WANG G D, ADIL M A, ZHANG J Q, et al.. Large-area organic solar cells:material requirements, modular designs, and printing methods[J].Adv. Mater., 2019, 31(45):1805089.
DONG S, JIA T, ZHANG K, et al.. Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%[J].Joule, 2020, 4(9):2004-2016.
HUANG K M, WONG Y Q, LIN M C, et al.. Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm2[J].Prog. Photovolt. Res. Appl., 2019, 27(3):264-274.
JI G Q, ZHAO W C, WEI J F, et al.. 12.88% efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer[J].J. Mater. Chem. A, 2019, 7(1):212-220.
YE L, XIONG Y, YAO H F, et al.. High performance organic solar cells processed by blade coating in air from a benign food additive solution[J].Chem. Mater., 2016, 28(20):7451-7458.
CHEN J D, CUI C H, LI Y Q, et al.. Single-junction polymer solar cells exceeding 10% power conversion efficiency[J].Adv. Mater., 2015, 27(6):1035-1041.
TSAI P T, YU K C, CHANG C J, et al.. Large-area organic solar cells by accelerated blade coating[J].Org. Electron., 2015, 22:166-172.
TAN L C, WANG Y L, ZHANG J W, et al.. Highly efficient flexible polymer solar cells with robust mechanical stability[J].Adv. Sci., 2019, 6(7):1801180-1-8.
0
浏览量
254
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构