浏览全部资源
扫码关注微信
1.中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201
2.中国科学院大学, 北京 100049
[ "胡盼(1997-), 女, 湖北鄂州人, 硕士研究生, 2019年于长春理工大学获得学士学位, 主要从事激光照明与显示用荧光陶瓷的研究。E-mail:hupan@nimte.ac.cn" ]
[ "刘永福(1985-), 男, 江苏丰县人, 博士, 副研究员, 硕士研究生导师, 2012年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事稀土发光材料物理、透明功能陶瓷及应用的研究。E-mail:liuyongfu@nimte.ac.cn" ]
LIU Ze-hua, E-mail:liuzehua@nimte.ac.cn
JIANG Jun, E-mail:jjun@nimte.ac.cn
纸质出版日期:2020-12,
收稿日期:2020-8-20,
录用日期:2020-9-9
扫 描 看 全 文
胡盼, 丁慧, 刘永福, 等. YAG:Ce3+在激光照明应用中的研究进展[J]. 发光学报, 2020,41(12):1504-1528.
Pan HU, Hui DING, Yong-fu LIU, et al. Recent Progress of YAG:Ce3+ for White Laser Diode Lighting Application[J]. Chinese Journal of Luminescence, 2020,41(12):1504-1528.
胡盼, 丁慧, 刘永福, 等. YAG:Ce3+在激光照明应用中的研究进展[J]. 发光学报, 2020,41(12):1504-1528. DOI: 10.37188/CJL.20200249.
Pan HU, Hui DING, Yong-fu LIU, et al. Recent Progress of YAG:Ce3+ for White Laser Diode Lighting Application[J]. Chinese Journal of Luminescence, 2020,41(12):1504-1528. DOI: 10.37188/CJL.20200249.
基于激光二极管(Laser diode,LD)的照明和显示技术代表了半导体行业未来的重要发展方向之一,荧光转换材料是决定激光照明的能量效率和显示产品色彩品质的核心部件。黄色荧光转换材料Y
3
Al
5
O
12
:Ce
3+
(YAG:Ce
3+
)适合蓝光LD激发、效率高、易于获得白光,仍然是目前最为广泛的研究对象。传统荧光粉加有机硅胶的封装模式热导率低,LD激发下存在烧蚀、发黑、失效等问题。LD高功率激发密度的特点引发了荧光材料封装技术革命性变革。为此,多形态、高热导率的远程荧光体应运而生。本综述主要对基于YAG:Ce
3+
荧光玻璃、荧光薄膜、荧光晶体、荧光陶瓷等不同形态材料的制备方法及其在LD照明应用中的性能研究进行了总结,对荧光转换材料和LD照明的发展进行了展望。
Laser diode(LD) is regarded as the next-generation solid-state lighting. Color converters are the key luminescent materials in determining white light quality in LD lighting. The yellow-emitting Y
3
Al
5
O
12
:Ce
3+
(YAG:Ce
3+
) is extensively researched in LD lighting. To migitate the thermal effect induced by the high-power density of blue LDs
remote encapsulations of phosphor in glasses/film
single-crystal phosphors
(transparent) ceramic phosphors are proposed. This paper reviews and summaries recent progress of YAG:Ce
3+
for LD lighting application and looks forward to its future development.
YAG:Ce3+荧光陶瓷荧光玻璃荧光薄膜激光照明
YAG:Ce3+ceramic phosphorsphosphor in glassphosphor filmwhite laser diode lighting
NAKAMURA S, MUKAI T, SENOH M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J].Appl. Phys. Lett., 1994, 64(13):1687-1689.
SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J].Science, 2005, 308(5726):1274-1278.
PIMPUTKAR S, SPECK J S, DENBAARS S P, et al.. Prospects for LED lighting[J].Nat. Photonics, 2009, 3(4):180-182.
DAICHO H, IWASAKI T, ENOMOTO K, et al.. A novel phosphor for glareless white light-emitting diodes[J].Nat. Commun., 2012, 3:1132.
ZHU H M, LIN C C, LUO W Q, et al.. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes[J].Nat. Commun., 2014, 5:4312.
PUST P, WEILER V, HECHT C, et al.. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material[J].Nat. Mater., 2014, 13(9):891-896.
YOON H K, ARUNKUMAR P, KIM B Y, et al.. A zero-thermal-quenching phosphor[J].Nat. Mater., 2017, 16(5):543-550.
HOERDER G J, SEIBALD M, BAUMANN D, et al.. Sr[Li2Al2O2N2]:Eu2+-a high performance red phosphor to brighten the future[J].Nat. Commun., 2019, 10:1824.
QIAO J W, ZHOU G J, ZHOU Y Y, et al.. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes[J].Nat. Commun., 2019, 10(1):5267.
DAI Q L, FOLEY M E, BRESHIKE C J, et al.. Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes[J].J. Am. Chem. Soc., 2011, 133(39):15475-15486.
CHEN W T, SHEU H S, LIU R S, et al.. Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors[J].J. Am. Chem. Soc., 2012, 134(19):8022-8025.
YEH C W, CHEN W T, LIU R S, et al.. Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes[J].J. Am. Chem. Soc., 2012, 134(34):14108-14117.
PARK W B, SINGH S P, SOHN K S. Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si, Al)5(O, N)8:Eu2+[J].J. Am. Chem. Soc., 2014, 136(6):2363-2373.
QIAO J W, NING L X, MOLOKEEV M S, et al.. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence[J].J. Am. Chem. Soc., 2018, 140(30):9730-9736.
LI X F, BUDAI J D, LIU F, et al.. New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion[J].Light Sci. Appl., 2013, 2(1):e50.
WANG L, XIE R J, LI Y Q, et al.. Ca1-xLixAl1-xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes[J].Light Sci. Appl., 2016, 5:e16155.
DAI P P, LI C, ZHANG X T, et al.. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes[J].Light Sci. Appl., 2016, 5(2):e16024.
SENDEN T, VAN DIJK-MOES R J A, MEIJERINK A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors[J].Light Sci. Appl., 2018, 7(1):8.
WEI Y, XING G C, LIU K, et al.. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization[J].Light Sci. Appl., 2019, 8(1):15.
ZHAO M, LIAO H X, MOLOKEEV M S, et al.. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition[J].Light Sci. Appl., 2019, 8(1):38.
JIA Z W, YUAN C X, LIU Y F, et al.. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources[J].Light Sci. Appl., 2020, 9:86.
WIERERJR J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J].Laser Photon. Rev., 2013, 7(6):963-993.
CHO J, SCHUBERT E F, KIM J K. Efficiency droop in light-emitting diodes:challenges and countermeasures[J].Laser Photon. Rev., 2013, 7(3):408-421.
LI S X, WANG L, HIROSAKI N, et al.. Color conversion materials for high-brightness laser-driven solid-state lighting[J].Laser Photon. Rev., 2018, 12(122):1800173.
STREK W, CICHY B, RADOSINSKI L, et al.. Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene[J].Light Sci. Appl., 2015, 4:e237.
ABU-AGEEL N, ASLAM D. Laser-driven visible solid-state light source for etendue-limited applications[J].J. Disp. Technol., 2014, 10(8):700-703.
KURITZKY L Y, SPECK J S. Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN[J].MRS Commun., 2015, 5(3):463-473.
WANG L, XIE R J, SUEHIRO T, et al.. Down-conversion nitride materials for solid state lighting:recent advances and perspectives[J].Chem. Rev., 2018, 118(4):1951-2009.
SCHÜTT F, ZAPF M, SIGNETTI S, et al.. Conversionless efficient and broadband laser light diffusers for high brightness illumination applications[J].Nat. Commun., 2020, 11:1437.
ZHANG D, XIAO W G, LIU C, et al.. Highly efficient phosphor-glass composites by pressureless sintering[J].Nat. Commun., 2020, 11:2805.
MAIMAN T H. Stimulated optical radiation in ruby[J].Nature, 1960, 187(4736):493-494.
NARUKAWA Y, NAGAHAMA S I, TAMAKI H, et al.. Development of high-luminance white light source using GaN-based light emitting devices[J].Oyo Butsuri, 2005, 74(11):1423-1432.
GEOCKE T, WEBE R S, SIELE R M, et al.. Lighting innovations of future BMW vehicles[C].11th International Symposium on Automotive Lighting-ISAL 2015-Proceedings of The Conference, Darmstadt, Germany, 2015: 19-28.
毕武.汽车激光前照灯关键技术研究[D].天津: 天津工业大学, 2019.
BI W. The Research on Key Technologies of Automotive Laser Headlamp [D]. Tianjin: Tianjin Polytechnic University, 2019. (in Chinese)
LIU Y F, ZHANG J X, ZHANG C H, et al.. Ba9Lu2Si6O24:Ce3+:an efficient green phosphor with high thermal and radiation stability for solid-state lighting[J].Adv. Opt. Mater., 2015, 3(8):1096-1101.
LIU Y F, ZHANG J X, ZHANG C H, et al.. High efficiency green phosphor Ba9Lu2Si6O24:Tb3+:visible quantum cutting via cross-relaxation energy transfers[J].Phys. Chem. C, 2016, 120(4):2362-2370.
LIU Y F, SILVER J, XIE R J, et al.. An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application[J].J. Mater. Chem. C, 2017, 5(47):12365-12377.
XU J, YANG Y, WANG J, et al.. Industry-friendly synthesis and high saturation threshold of a LuAG:Ce/glass composite film realizing high-brightness laser lighting[J].J. Eur. Ceram. Soc., 2020, 40(15):6031-6036.
LIU Y F, ZHANG X, HAO Z D, et al.. Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications[J].J. Mater. Chem., 2011, 21(41):16379-16384.
LIU Y F, ZHANG X, HAO Z D, et al.. Generation of broadband emission by incorporating N3- into Ca3Sc2Si3O12:Ce3+ garnet for high rendering white LEDs[J].J. Mater. Chem., 2011, 21(17):6354-6358.
LIU Y F, ZHANG X, HAO Z D, et al.. Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer[J].Chem. Commun., 2011, 47(38):10677-10679.
SHANG M M, LI C X, LIN J. How to produce white light in a single-phase host[J].Chem. Soc. Rev., 2014, 43(5):1372-1386.
WANG L, WANG X J, TAKEDA T, et al.. Structure, luminescence, and application of a robust carbidonitride blue phosphor (Al1-xSixCxN1-x:Eu2+) for near UV-LED driven solid state lighting[J].Chem. Mater., 2015, 27(24):8457-8466.
ZHANG X J, ZHANG J L, WU X L, et al.. Discovery of blue-emitting Eu2+-activated sodium aluminate phosphor with high thermal stability via phase segregation[J].Chem. Eng. J., 2020, 388:124289.
NEUMANN A, WIERER J J, DAVIS W, et al.. Four-color laser white illuminant demonstrating high color-rendering quality[J].Opt. Express, 2011, 19(S4):A982-A990.
XU Y, HU H F, ZHUANG W D, et al.. Highly stable white light from ultraviolet laser diode[C].Proceedings of SPIE, Optoelectronic Materials and Devices Ⅲ, Hangzhou, 2008: 1-4.
LIU S, SUN P, LIU Y F, et al.. Warm white light with a high color-rendering index from a single Gd3Al4GaO12:Ce3+transparent ceramic for high-power LEDs and LDs[J].ACS Appl. Mater. Interfaces, 2019, 11(2):2130-2139.
BLASSE G, BRIL A. A new phosphor for flying-spot cathode-ray tubes for color television:yellow-emitting Y3Al5O12-Ce3+[J].Appl. Phys. Lett., 1967, 11(2):53-55.
SETLUR A A. Phosphors for LED-based solid-state lighting[J].Electrochem. Soc. Interface, 2009, 18(4):32-36.
BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce[J].Chem. Mater., 2009, 21(10):2077-2084.
BIRKEL A, DENAULT K A, GEORGE N C, et al.. Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting[J].Chem. Mater., 2012, 24(6):1198-1204.
SHANG M M, FAN J, LIAN H Z, et al.. A double substitution of Mg2+-Si4+/Ge4+ for Al(1)3+-Al(2)3+ in Ce3+-doped garnet phosphor for white LEDs[J].Inorg. Chem., 2014, 53(14):7748-7755.
SONG Z, LIU X L, HE L Z, et al.. Correlation between the energy level structure of cerium-doped yttrium aluminum garnet and luminescent behavior at varying temperatures[J].Mater. Res. Express, 2016, 3(5):055501-1-8.
MA X G, LI X Y, LI J Q, et al.. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics[J].Nat. Commun., 2018, 9:1175.
HUANG P, ZHOU B Y, ZHENG Q, et al.. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG:Ce composite ceramics for high luminous efficiency white light-emitting diodes[J].Adv. Mater., 2020, 32(1):905951.
YUAN R, HUANG M, ZHENG F, et al.. Rapid, convenient and low-energy preparation of spherical rare earth doped YAG phosphors by a laser sintering method[J].J. Mater. Chem. C, 2019, 7(42):13070-13079.
UEDAJ, TANABE S. (INVITED) Review of luminescent properties of Ce3+-doped garnet phosphors:new insight into the effect of crystal and electronic structure[J].Opt. Mater., 2019, 1:100018.
郑飞, 茅云蔚, 杨波波, 等.基于YAG:Ce3+荧光粉复合Eu3+掺杂荧光玻璃的激光照明器件[J].发光学报, 2019, 40(7):842-848.
ZHENG F, MAO Y W, YANG B B, et al.. Laser lighting device based on YAG:Ce3+ phosphor composite Eu3+ doped phosphor-in-glasses[J].Chin. J. Lumin., 2019, 40(7):842-848. (in Chinese)
KIM Y H, VISWANATH V S, UNITHRATTIL S, et al.. Review-phosphor plates for high-power LED applications:challenges and opportunities toward perfect lighting[J].ECS J. Solid State Sci. Technol., 2018, 7(1):R3134-R3147.
CHUNGW J, NAM Y H. Review-a review on phosphor in glass as a high power LED color converter[J].ECS J. Solid State Sci. Technol., 2020, 9:016010-1-15.
FUJITA S, YOSHIHARA S, SAKAMOTO A, et al.. YAG glass-ceramic phosphor for white LED (Ⅰ): background and development[C].Proceedings of SPIE, Fifth International Conference on Solid State Lighting, San Diego, 2005: 594111.
TANABE S, FUJITA S, YOSHIHARA S, et al.. YAG glass-ceramic phosphor for white LED (Ⅱ): luminescence characteristics[C].Proceedings of SPIE, Fifth International Conference on Solid State Lighting, San Diego, 2005: 594112.
CHEN D Q, XU W, ZHOU Y, et al.. Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes[J].J. Mater. Chem. C, 2017, 5(3):738-746.
CHEN D Q, XIANG W D, LIANG X J, et al.. Advances in transparent glass-ceramic phosphors for white light-emitting diodes-a review[J].J. Eur. Ceram. Soc., 2015, 35(3):859-869.
XIANG R, LIANG X J, XI Q Y. et al.. A chromaticity-tunable white LED by screen-printing red phosphor coating on PiG plates[J].Ceram. Int., 2016, 42(16):19276-19282.
XIANG R, LIANG X J, LI P Z, et al.. A thermally stable warm WLED obtained by screen-printing a red phosphor layer on the LuAG:Ce3+ PiG substrate[J].Chem. Eng. J., 2016, 306:858-865.
LIN H, WANG B, XU J, et al.. Phosphor-in-glass for high-powered remote-type white AC-LED[J].ACS Appl. Mater. Interfaces, 2014, 6(23):21264-21269.
ZHANG R, LIN H, YU Y L,et al.. A new-generation color converter for high-power white LED:transparent Ce3+:YAG phosphor-in-glass[J].Laser Photon. Rev., 2014, 8(1):158-164.
LIN H, HU T, CHENG Y, et al.. Glass ceramic phosphors:towards long-lifetime high-power white light-emitting-diode applications-a review[J].Laser Photon. Rev., 2018, 12(6):1700344-1-31.
ZHANG X J, HUANG L, PAN F J, et al.. Highly thermally stable single-component white-emitting silicate glass for organic-resin-free white-light-emitting diodes[J].ACS Appl. Mater. Interfaces, 2014, 6(4):2709-2717.
ZHANG X J, YU J B, WANG J, et al.. Facile preparation and ultrastable performance of single-component white-light-emitting phosphor-in-glass used for high-power warm white LEDs[J].ACS Appl. Mater. Interfaces, 2015, 7(51):28122-28127.
ZHANG J H, GONG S M, YU J B, et al.. Thermally stable white emitting Eu3+ complex@nanozeolite@luminescent glass composite with high CRI for organic-resin-free warm white LEDs[J].ACS Appl. Mater. Interfaces, 2017, 9(8):7272-7281.
DENG J K, LI W, ZHANG H R, et al.. Eu3+-doped phosphor-in-glass:a route toward tunable multicolor materials for near-UV high-power warm-white LEDs[J].Adv. Opt. Mater., 2017, 5(3):1600910.
JIANG Y G, JIANG B X, YUAN X Q, et al.. Preparation and luminescence of Ce:YAG transparent glass ceramics by liquid-phase sintering[J].Mater. Lett., 2017, 195:120-122.
PENG Y, LI R X, CHENG H, et al.. Facile preparation of patterned phosphor-in-glass with excellent luminous properties through screen-printing for high-power white light-emitting diodes[J].J. Alloys Compd., 2017, 693:279-284.
LI H, XU X J, LI Y, et al.. Preparation and luminescent properties of the coating of phosphor in lead-free glass by multilayer screen-printing[J].J. Alloys Compd., 2016, 684:372-378.
黄波, 童玉珍, 李成明, 等.基于荧光玻璃的高效LED白光技术[J].发光学报, 2016, 37(6):637-643.
HUANG B, TONG Y Z, LI C M, et al.. High-efficiency technology of LED white light based on phosphor glass[J].Chin. J. Lumin., 2016, 37(6):637-643. (in Chinese)
REVAUX A, DANTELLE G, GEORGE N, et al.. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films[J].Nanoscale, 2011, 3(5):2015-2022.
ZHAO Y Y, XU H R, ZHANG X Y, et al.. Facile synthesis of YAG:Ce3+ thick films for phosphor converted white light emitting diodes[J].J. Eur. Ceramic Soc., 2015, 35(13):3761-3764.
LAI C F, LI J S, SHEN C W. High-efficiency robust free-standing composited phosphor films with 2D and 3D nanostructures for high-power remote white LEDs[J].ACS Appl. Mater. Interfaces, 2017, 9(5):4851-4859.
LATYNINA A, WATANABE M, INOMATA D, et al.. Properties of czochralski grown Ce, Gd:Y3Al5O12 single crystal for white light-emitting diode[J].J. Alloys Compd., 2013, 553:89-92.
ARJOCA S, VÍLLORA E G, INOMATA D, et al.. Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs[J].Mater. Res. Express, 2015, 2(5):055503-1-9.
YANG C, GU G R, ZHAO X J, et al.. The growth and luminescence properties of Y3Al5O12:Ce3+ single crystal by doping Gd3+ for W-LEDs[J].Mater. Lett., 2016, 170:58-61.
FENG L G, LI Y F, XIONG H, et al.. Freestanding GaN-based light-emitting diode membranes on Y3Al5O12:Ce3+ crystal phosphor plate for efficient white light emission[J].Appl. Phys. Express, 2016, 9(8):081003-1-3.
NISHIURA S, TANABE S, FUJIOKA K, et al.. Preparation and optical properties of transparent Ce: YAG ceramics for high power white LED[C].IOP Conference Series: Materials Science and Engineering, Nagoya, Japan, 2008: 012031.
NISHIURA S, TANABE S, FUJIOKA K, et al.. Properties of transparent Ce:YAG ceramic phosphors for white LED[J].Opt. Mater., 2011, 33(5):688-691.
NISHIURA S, TANABE S, FUJIOKA K, et al.. Preparation of transparent Ce3+: GdYAG ceramics phosphors for white LED[C].IOP Conference Series: Materials Science and Engineering, Nagoya, Japan, 2011: 102005.
NISHIURA S, TANABE S, FUJIOKA K, et al.. Transparent Ce3+:GdYAG ceramic phosphors for white LED[J].Proceedings of SPIE, Optical Components and Materials Ⅷ, California, 2011:793404.
WEI N A, LU T C, LI F, et al.. Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes[J].Appl. Phys. Lett., 2012, 101(6):061902.
RAUKAS M, KELSO J, ZHENG Y, et al.. Ceramic phosphors for light conversion in LEDs[J].ECS J. Solid State Sci. Technol., 2012, 2(2):R3168-R3176.
LIU G H, ZHOU Z Z, SHI Y, et al.. Ce:YAG transparent ceramics for applications of high power LEDs:thickness effects and high temperature performance[J].Mater. Lett., 2015, 139:480-482.
LIU X, ZHOU H Y, HU Z W, et al.. Transparent Ce:GdYAG ceramic color converters for high-brightness white LEDs and LDs[J].Opt. Mater., 2019, 88:97-102.
HU S, LU C H, ZHOU G H, et al.. Transparent YAG:Ce ceramics for WLEDs with high CRI:Ce3+ concentration and sample thickness effects[J].Ceram. Int., 2016, 42(6):6935-6941.
LIU Y L, HU S, ZHANG Y L, et al.. Crystal structure evolution and luminescence property of Ce3+-doped Y2O3-Al2O3-Sc2O3 ternary ceramics[J].J. Eur. Ceram. Soc., 2020, 40(3):840-846.
FENG S W, QIN H M, WU G Q, et al.. Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application[J].J. Eur. Ceram. Soc., 2017, 37(10):3403-3409.
TANG Y R, ZHOU S M, YI X Z, et al.. The characterization of Ce/Pr-doped YAG phosphor ceramic for the white LEDs[J].J. Alloys Compd., 2018, 745:84-89.
TIAN Y N, TANG Y R, YI X Z, et al.. The analyses of structure and luminescence in (MgyY3-y) (Al5-ySiy)O12 and Y3(MgxAl5-2xSix)O12 ceramic phosphors[J].J. Alloys Compd., 2020, 813:152236.
ZHANG L, SUN B H, GU L C, et al.. Enhanced light extraction of single-surface textured YAG:Ce transparent ceramics for high power white LEDs[J].Appl. Surface Sci., 2018, 455:425-432.
SUN BH, ZHANG L, ZHOU T Y, et al.. Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs[J].J. Mater. Chem. C, 2019, 7(14):4057-4065.
CHEN J, DENG Z H, LIU Z G, et al.. Optical enhancement brought by doping Gd3+ ions into Ce:YAG ceramics for indoor white light-emitting diodes[J].Opt. Express, 2015, 23(7):A292-A298.
ISHIKAWA T, SAKATA S I, MITANI A, et al.. Durable, ultraluminous structure for incandescent, high-power white-LED[J].Int. J. Appl. Ceram. Technol., 2006, 3(2) 144-149.
SELIM F A, KHAMEHCHI A, WINARSKI D, et al.. Synthesis and characterization of Ce:YAG nano-phosphors and ceramics[J].Opt. Mater. Express, 2016, 6(12):3704-3715.
LIU Y F, LIU S, SUN P, et al.. Transparent ceramics enabling high luminous flux and efficacy for the next-generation high-power LED light[J].ACS Appl. Mater. Interfaces, 2019, 11(24):21697-21701.
LI S X, WANG L, HIROSAKI N, et al.. Color conversion materials for high-brightness laser-driven solid-state lighting[J].Laser Photon. Rev., 2018, 12(12):1800173-1-29.
贺龙飞, 范广涵, 雷牧云, 等.白光LED用新型MgAl2O4/Ce:YAG透明陶瓷的发光性能[J].发光学报, 2013, 34(2):133-138.
HE L F, FAN G H, LEI M Y, et al.. Luminescent properties of new MgAl2O4/Ce:YAG transparent ceramics for white LED applications[J].Chin. J. Lumin., 2013, 34(2):133-138. (in Chinese)
ZHANG X J, YU J B, WANG J, et al.. All-inorganic light convertor based on phosphor-in-glass engineering for next-generation modular high-brightness white LEDs/LDs[J].ACS Photonics, 2017, 4(4):986-995.
YU J B, SI S C, LIU Y, et al.. High-power laser-driven phosphor-in-glass for excellently high conversion efficiency white light generation for special illumination or display backlighting[J].J. Mater. Chem. C, 2018, 6(30):8212-8218.
ZHANG X J, SI S C, YU J B, et al.. Improving the luminous efficacy and resistance to blue laser irradiation of phosphor-in-glass based solid state laser lighting through employing dual-functional sapphire plate[J].J. Mater. Chem. C, 2019, 7(2):354-361.
ZHANG D, XIAO W G, LIU C, et al.. Highly efficient phosphor-glass composites by pressureless sintering[J].Nat. Commun., 2020, 11:2805.
XU J, LIU B G, LIU Z W, et al.. Design of laser-driven SiO2-YAG:Ce composite thick film:facile synthesis, robust thermal performance, and application in solid-state laser lighting[J].Opt. Mater., 2018, 75:508-512.
ZHENG P, LI S X, WANG L, et al.. Unique color converter architecture enabling phosphor-in-glass (PiG) films suitable for high-power and high-luminance laser-driven white lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(17):14930-14940.
PENG Y, MOU Y, SUN Q L, et al.. Facile fabrication of heat-conducting phosphor-in-glass with dual-sapphire plates for laser-driven white lighting[J].J. Alloys Compd., 2019, 790:744-749.
MOU Y, WANG H, LIANG D D, et al.. Efficient and heat-conducting color converter of phosphor glass film printed on sapphire substrate for high-power white LEDs/LDs[J].J. Non-Cryst. Solids, 2019, 515:98-105.
WU H J, HAO Z D, PAN G H, et al.. Phosphor-SiO2 composite films suitable for white laser lighting with excellent color rendering[J].J. Eur. Ceram. Soc., 2020, 40(6):2439-2444.
PENG Y, MOU Y, WANG H, et al.. Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting[J].J. Eur. Ceram. Soc., 2018, 38(16):5525-5532.
XU J, HU B F, XU C, et al.. Carbon-free synthesis and luminescence saturation in a thick YAG:Ce film for laser-driven white lighting[J].J. Eur. Ceram. Soc., 2019, 39(2-3):631-634.
PARK J, KIM J, KWON H. Phosphor-aluminum composite for energy recycling with high-power white lighting[J].Adv. Opt. Mater., 2017, 5(19):1700347-1-6.
PARK J, CHO S, KWON H. Aluminum-ceramic composites for thermal management in energy-conversion systems[J].Sci. Rep., 2018, 8:17852.
WANG H, MOU Y, PENG Y, et al.. Fabrication of phosphor glass film on aluminum plate by using lead-free tellurite glass for laser-driven white lighting[J].J. Alloys Compd., 2020, 814:152321.
ARJOCA S, VÍLLORA E G, INOMATA D, et al.. Ce:(Y1-xLux)3Al5O12 single-crystal phosphor plates for high-brightness white LEDs/LDs with high-color rendering (Ra > 90) and temperature stability[J]. Mater. Res. Express, 2014, 1(2):025041.
VILLORA E G, ARJOCA S, INOMATA D, et al.. Single-crystal phosphors for high-brightness white LEDs/LDs[C].Proceedings of SPIE, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting ⅩⅩ, San Francisco, 2016: 976805.
CANTORE M, PFAFF N, FARRELL R M, et al.. High luminous flux from single crystal phosphor-converted laser-based white lighting system[J].Opt. Express, 2016, 24(2):A215-A221.
XU J, THORSETH A, XU C, et al.. Investigation of laser-induced luminescence saturation in a single-crystal YAG:Ce phosphor:towards unique architecture, high saturation threshold, and high-brightness laser-driven white lighting[J].J. Lumin., 2019, 212:279-285.
SONG Y H, JI E K, JEONG B W, et al.. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting[J].Sci. Rep., 2016, 6:31206-1-7.
ZHENG P, LI S X, WEI R, et al.. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photon. Rev., 2019, 13(10):1900147-1-10.
XU Y R, LI S X, ZHENG P, et al.. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation[J].J. Mater. Chem. C., 2019, 7(37):11449-11456.
YAO Q, HU P, SUN P, et al.. YAG:Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J].Adv. Mater., 2020, 32(19):1907888.
MA Y L, ZHANG L, ZHOU T Y, et al.. Weak thermal quenching and tunable luminescence in Ce:Y3(Al, Sc)5O12 transparent ceramics for high power white LEDs/LDs[J].Chem. Eng. J., 2020, 398:125486.
LI S X, ZHU Q Q, TANG D M, et al.. Al2O3-YAG:Ce composite phosphor ceramic:a thermally robust and efficient color converter for solid state laser lighting[J].J. Mater. Chem. C, 2016, 4(37):8648-8654.
SONG Y H, JI E K, JEONG B W, et al.. Design of laser-driven high-efficiency Al2O3/YAG:Ce3+ ceramic converter for automotive lighting:fabrication, luminous emittance, and tunable color space[J].Dyes Pigments, 2017, 139:688-692.
COZZAN C, LHEUREUX G, O'DEA N, et al.. Stable, heat-conducting phosphor composites for high-power laser lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(6):5673-5681.
LIU Z H, LI S X, HUANG Y H, et al.. Composite ceramic with high saturation input powder in solid-state laser lighting:microstructure, properties, and luminous emittances[J].Ceram. Int., 2018, 44(16):20232-20238.
LIU Z H, LI S X, HUANG Y H, et al.. The effect of the porosity on the Al2O3-YAG:Ce phosphor ceramic:microstructure, luminescent efficiency, and luminous stability in laser-driven lighting[J].J. Alloys Compd., 2019, 785:125-130.
HU S, LIU Y L, ZHANG Y L, et al.. 3D printed ceramic phosphor and the photoluminescence property under blue laser excitation[J].J. Eur. Ceram. Soc., 2019, 39(8):2731-2738.
ZHU Q Q, MENG Y, ZHANG H, et al.. YAGG:Ce phosphor-in-YAG ceramic:an efficient green color converter suitable for high-power blue laser lighting[J]ACS Appl. Electron. Mater., 2020, 2(8):2644-2650.
ZHU Q Q, WANG X J, WANG L, et al.. β-sialon:Eu phosphor-in-glass:a robust green color converter for high power blue laser lighting[J].J. Mater. Chem. C, 2015, 3(41):10761-10766.
PARK Y J, KIM S W, KIM C J, et al.. Development of β-SiAlON:Eu2+ phosphor in glass for high-power LED-and LD-based lighting systems using original BaO-B2O3-ZnO-SiO2(BBZS) composition glass[J].J. Alloys Compd., 2019, 794:94-100.
XU J, YANG Y, WANG J, et al.. Industry-friendly synthesis and high saturation threshold of a LuAG:Ce/glass composite film realizing high-brightness laser lighting[J].J. Eur. Ceram. Soc., 2020, 40(15):6031-6036.
KANGT W, PARK K W, RYU J H, et al.. Strong thermal stability of Lu3Al5O12:Ce3+ single crystal phosphor for laser lighting[J].J. Lumin., 2017, 191:35-39.
KRASNOSHCHOKA A, THORSETH A, DAM-HANSEN C, et al.. Investigation of saturation effects in ceramic phosphors for laser lighting[J].Materials, 2017, 10(12):1407-1-9.
XU J, WANG J, GONG Y X, et al.. Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering:towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting[J].J. Eur. Ceram. Soc., 2018, 38(1):343-347.
ZHANG Y L, HU S, WANG Z J, et al.. Pore-existing Lu3Al5O12:Ce ceramic phosphor:an efficient green color converter for laser light source[J].J. Lumin., 2018, 197:331-334.
ZHANG Q, ZHENG R L, DING J Y, et al.. Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-pumped green-emitting phosphor[J].Opt. Lett., 2018, 43(15):3566-3569.
HUANG Y F, CHI U C, CHENG C H, et al.. LuAG:Ce/CASN:Eu phosphor enhanced high-CRI R/G/B LD lighting fidelity[J].J. Mater. Chem. C, 2019, 7:9556.
LI K, SHI Y, JIA F Q, et al.. Low etendue yellow-green solid-state light generation by laser-pumped LuAG:Ce ceramic[J].IEEE Photon. Technol. Lett., 2018, 30(10):939-942.
YOU S H, LI S X, JIA Y C, et al.. Interstitial site engineering for creating unusual red emission in La3Si6N11:Ce3+[J].Chem. Mater., 2020, 32(8):3631-3640.
YOU S H, LI S X, ZHENG P, et al.. A thermally robust La3Si6N11:Ce-in-glass film for high-brightness blue-laser-driven solid state lighting[J].Laser Photon. Rev., 2019, 13(2):1800216-1-10.
NITTA M, NAGAO N, NOMURA Y K, et al.. High-brightness red-emitting phosphor La3(Si, Al)6(O, N)11:Ce3+ for next-generation solid-state light sources[J].ACS Appl. Mater. Interfaces, 2020, 12(28):31652-31658.
LIU G, TIAN Z F, CHEN Z H, et al.. CaAlSiN3:Eu2+ phosphors bonding with bismuth borate glass for high power light excitation[J].Opt. Mater., 2015, 40:63-67.
LI S X, ZHU Q Q, WANG L, et al.. CaAlSiN3:Eu2+ translucent ceramic:a promising robust and efficient red color converter for solid state laser displays and lighting[J].J. Mater. Chem. C, 2016, 4(35):8197-8205.
LI S X, TANG D M, TIAN Z F, et al.. New insights into the microstructure of translucent CaAlSiN3:Eu2+ phosphor ceramics for solid-state laser lighting[J].J. Mater. Chem. C, 2017, 5(5):1042-1051.
ZHU Q Q, XU X, WANG L, et al.. A robust red-emitting phosphor-in-glass (PiG) for use in white lighting sources pumped by blue laser diodes[J].J. Alloys Compd., 2017, 702:193-198.
XU J, YANG Y, GUO Z Q, et al.. Design of a CaAlSiN3:Eu/glass composite film:facile synthesis, high saturation-threshold and application in high-power laser lighting[J].J. Eur. Ceram. Soc., 2020, 40(13):4704-4708.
ZHANG Y J, ZHANG Z L, LIU X D, et al.. A high quantum efficiency CaAlSiN3:Eu2+ phosphor-in-glass with excellent optical performance for white light-emitting diodes and blue laser diodes[J].Chem. Eng. J., 2020, 401:125983.
WANG L, WEI R, ZHENG P, et al.. Realizing high-brightness and ultra-wide-color-gamut laser-driven backlighting by using laminated phosphor-in-glass (PiG) films[J].J. Mater. Chem. C, 2020, 8(5):1746-1754.
TANG Y, LIANG Y F, DING X R, et al.. A laser-driven phosphor converted system with enhanced optical efficiency by using light-recycling dichroic filters[J].J. Lumin., 2020, 223:117180.
0
浏览量
1220
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构