浏览全部资源
扫码关注微信
1.郑州大学 材料科学与工程学院, 河南 郑州 450001
2.河南理工大学 物理与电子信息学院, 河南 焦作 454000
3.东莞理工学院 材料科学与工程学院, 广东 东莞 523808
4.厦门大学 材料学院, 福建 厦门 361000
[ "王兆武(1985-), 男, 河南新乡人, 博士研究生, 2015年于河南工业大学获得硕士学位, 主要从事Mn4+激活红光荧光粉方面的研究。E-mail:smithen0504@gs.zzu.edu.cn" ]
[ "姬海鹏(1989-), 男, 河南南阳人, 博士, 讲师(直聘副教授), 2017年于中国地质大学(北京)获得博士学位, 主要从事固体发光材料方面的研究。E-mail:jihp@zzu.edu.cn" ]
[ "陈德良(1975-), 男, 湖南永州人, 博士, 教授, 博士研究生导师, 2005年于中国科学院上海硅酸盐研究所获得博士学位, 主要从事新型无机材料的低碳制备技术与能源环境应用方面的研究。E-mail:dlchen@zzu.edu.cn" ]
纸质出版日期:2020-10,
收稿日期:2020-06-24,
录用日期:2020-7-16
移动端阅览
王兆武, 姬海鹏, 徐坚, 等. 白光LED用Mn4+激活红光荧光粉中锰离子价态表征研究进展[J]. 发光学报, 2020,41(10):1195-1213.
ZHAO-WU WANG, HAI-PENG JI, JIAN XU, et al. Advances in Valence State Analysis of Manganese in Mn4+-activated Red Phosphors for White LEDs. [J]. Chinese journal of luminescence, 2020, 41(10): 1195-1213.
王兆武, 姬海鹏, 徐坚, 等. 白光LED用Mn4+激活红光荧光粉中锰离子价态表征研究进展[J]. 发光学报, 2020,41(10):1195-1213. DOI: 10.37188/CJL.20200178.
ZHAO-WU WANG, HAI-PENG JI, JIAN XU, et al. Advances in Valence State Analysis of Manganese in Mn4+-activated Red Phosphors for White LEDs. [J]. Chinese journal of luminescence, 2020, 41(10): 1195-1213. DOI: 10.37188/CJL.20200178.
Mn
4+
激活红光荧光粉是白光发光二极管(LED)用荧光粉的研究热点之一。过渡金属锰元素具有未充满的d轨道,可形成Mn
4+
/Mn
3+
/Mn
2+
等多种价态,而其他价态的存在会影响Mn
4+
的吸收/辐射跃迁。目前,多数研究论文对所制备荧光粉中锰离子价态未进行表征,或采用的表征手段难以定性或定量确定多种共存价态锰离子的相对含量。本文对Mn
4+
激活红光荧光粉中锰离子价态表征手段进行综述,包括漫反射光谱、荧光光谱、X射线光电子能谱、电子顺磁共振谱、阴极射线发光谱、X射线精细吸收谱、变温磁化率谱等。对其测试结果在定性或定量表征锰离子价态方面的可靠性以及测试便易性进行对比评述。最后总结了影响锰离子价态的因素和调控其价态的实验方法,以期对新型高效Mn
4+
激活红光荧光粉的研发有所裨益。
The development of Mn
4+
activated red phosphor for white LEDs is one of the current research hotspots. Manganese
as a transition metal element
has partially filled d orbitals and can form various valence states other than Mn
4+
in the prepared phosphors. The existence of other valence states
however
can affect the absorption and luminescence of the Mn
4+
ions. In many related papers
the valence state of manganese ions of the as-prepared phosphors is not analyzed
or the adopted techniques are difficult to characterize various valence states of manganese ions qualitatively or quantitatively. This article reviews the valence-state characterization techniques of manganese ions
including the diffuse reflectance spectrum
the photoluminescence spectrum
the X-ray photoelectron spectroscopy
the electron paramagnetic resonance spectrum
the cathodoluminescence spectrum
the X-ray absorption fine structure spectrum
and the temperature-dependent magnetic susceptibility. The reliability of these techniques to qualitatively or quantitatively characterize the manganese valence is comparatively discussed. The influencing factors of the valence state of manganese ions and the regulating method of Mn
4+
in phosphors are also summarized
with a view to benefiting the development of new efficient Mn
4+
activated red phosphors.
白光LED荧光粉锰离子价态表征
white LEDphosphormanganese ionvalence state analysis
XIA Z G, XU Z H, CHEN M Y, et al.. Recent developments in the new inorganic solid-state LED phosphors[J].Dalton Trans., 2016, 45(28):11214-11232.
WANG L, XIE R J, SUEHIRO T, et al.. Down-conversion nitride materials for solid state lighting:recent advances and perspectives[J].Chem. Rev., 2018, 118(4):1951-2009.
LIN C C, MEIJERINK A, LIU R S. Critical red components for next-generation white LEDs[J].J. Phys. Chem. Lett., 2016, 7(3):495-503.
XIE R J, HINTZEN H T. Optical properties of (oxy)nitride materials:a review[J].J. Am. Ceram. Soc., 2013, 96(3):665-687.
PUST P, WEILER V, HECHT C, et al.. Narrow-band red-emitting Sr[LiAl3N4]: Eu2+ as a next-generation LED-phosphor material[J].Nat. Mater., 2014, 13(9):891-896.
SCHMIECHEN S, SCHNEIDER H, WAGATHA P, et al.. Toward new phosphors for application in illumination-grade white pc-LEDs:the nitridomagnesosilicates Ca[Mg3SiN4]: Ce3+, Sr[Mg3SiN4]: Eu2+, and Eu[Mg3SiN4][J].Chem. Mater., 2014, 26(8):2712-2719.
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al.. Mn2+ and Mn4+ red phosphors:synthesis, luminescence and applications in WLEDs. A review[J].J. Mater. Chem. C, 2018, 6(11):2652-2671.
PAULUSZ A G. Efficient Mn(Ⅳ) emission in fluorine coordination[J].J. Electrochem. Soc., 1973, 120(7):942.
周亚运, 王岭燕, 邓婷婷, 等. Mn4+掺杂氟化物窄带发射红色荧光粉的研究进展[J].中国科学:技术科学, 2017, 47(11):1111-1125.
ZHOU Y Y, WANG L Y, DENG T T, et al.. Recent advances in Mn4+-doped fluoride narrow-band red-emitting phosphors[J].Sci. Sinica Technol., 2017, 47(11):1111-1125. (in Chinese)
刘元红, 高慰, 陈观通, 等.白光LED用氟化物荧光粉研究进展及发展趋势[J].中国照明电器, 2018(2):20-24.
LIU Y H, GAO W, CHEN G T, et al.. Research progress and development trend of fluoride phosphor for white LED[J].China Light Light., 2018(2):20-24. (in Chinese)
姬海鹏, 张宗涛, XU Jian, 等. Mn4+激活氧氟化物红光荧光粉的研究进展[J].无机材料学报, 2020, 35(8):847-856.
JI H P, ZHANG Z T, XU J, et al.. Advance in red-emitting Mn4+-activated oxyfluoride phosphors[J].J. Inorg. Mater., 2020, 35(8):847-856. (in Chinese).
ADACHI S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications:a review[J].J. Lumin., 2018, 202:263-281.
VERSTRAETE R, SIJBOM H F, KORTHOUT K,et al.. K2MnF6 as a precursor for saturated red fluoride phosphors:the struggle for structural stability[J].J. Mater. Chem. C, 2017, 5(41):10761-10769.
ARUNKUMAR P, KIM Y H, KIM H J, et al.. Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices[J].ACS Appl. Mater. Interfaces, 2017, 9(8):7232-7240.
PENG M Y, YIN X W, TANNER P A, et al.. Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25: Mn4+:an efficient red phosphor for warm white light emitting diodes[J].J. Am. Ceram. Soc., 2013, 96(9):2870-2876.
SIJBOM H F, VERSTRAETE R, JOOS J J, et al.. K2SiF6: Mn4+ as a red phosphor for displays and warm-white LEDs:a review of properties and perspectives[J].Opt. Mater. Express, 2017, 7(9):3332-3365.
CHEN L, XUE S C, CHEN X L, et al.. The site occupation and valence of Mn ions in the crystal lattice of Sr4Al14O25 and its deep red emission for high color-rendering white light-emitting diodes[J].Mater. Res. Bull., 2014, 60:604-611.
XU H W, WANG L L, MA X M, et al.. A novel Mn(Ⅱ)-based green phosphor and its self-reduction mechanism[J].J. Lumin., 2018, 194:303-310.
DING X, LI Z H, SHI Y R, et al.. Luminescence properties of Ca2Sn2Al2O9: Mn as a long afterglow and field-emission displays material with high yellow color purity[J].J. Alloys Compd., 2020, 824:153931.
WENG C L, HUANG C S, TSAI M H, et al.. The synthesis and photoluminescence enhancement of sensitizer-doped Li2MgTi3O8: Mn4+ red phosphor[J].J. Alloys Compd., 2019, 787:440-447.
AMARASINGHE D K, RABUFFETTI F A. Bandshift luminescence thermometry using Mn4+: Na4Mg(WO4)3 phosphors[J].Chem. Mater., 2019, 31(24):10197-10204.
PENG L L, CHEN W B, CAO S X, et al.. Enhanced photoluminescence and thermal properties due to size mismatch in Mg2TixGe1-xO4: Mn4+ deep-red phosphors[J].J. Mater. Chem. C, 2019, 7(8):2345-2352.
NARESH V, LEE N. KGaP2O7: Mn4+ deep red emitting phosphor:synthesis, structure, concentration and temperature dependent photoluminescence characteristics[J].J. Lumin., 2019, 214:116565.
ALI A, KHANZADA L S, HASHEMI A, et al.. Optimization of synthesis and compositional parameters of magnesium germanate and fluoro-germanate thermographic phosphors[J].J. Alloys Compd., 2018, 734:29-35.
JI H P, HOU X H, MOLOKEEV M S, et al.. Ultrabroadband red luminescence of Mn4+ in MgAl2O4 peaking at 651 nm[J].Dalton Trans., 2020, 49(17):5711-5721.
ZHANG S A, HU Y H, DUAN H, et al.. An efficient, broad-band red-emitting Li2MgTi3O8: Mn4+ phosphor for blue-converted white LEDs[J].J. Alloys Compd., 2017, 693:315-325.
DU M M, TANG F, LONG J Q, et al.. Optical and thermal behaviors of high efficient K2TiF6: Mn4+ red phosphor prepared by modified two-step co-precipitation method[J].Mater. Res. Bull., 2016, 83:316-323.
ZHANG Y L, HU S, LIU Y L, et al.. Red-emitting Lu3Al5O12: Mn transparent ceramic phosphors:valence state evolution studies of Mn ions[J].Ceram. Int., 2018, 44(18):23259-23262.
ZHANG Y L, HU S, LIU Y L, et al.. Influences of thermal post-treatment on the Mn valence states and luminescence properties of red-emitting Lu3Al5O12: Mn4+ transparent ceramic phosphors[J].Opt. Mater., 2020, 101:109705.
LIAO Z F, XU H F, ZHAO W R, et al.. Energy transfer from Mn4+ to Mn5+ and near infrared emission with wide excitation band in Ca14Zn6Ga10O35: Mn phosphors[J].Chem. Eng. J., 2020, 395:125060.
HOSHINO R, ADACHI S. Optical spectroscopy and degradation behavior of ZnGeF6·6H2O: Mn4+ red-emitting phosphor[J].J. Lumin., 2015, 162:63-71.
VERSTRAETE R, SIJBOM H F, JOOS J J, et al.. Red Mn4+ -doped fluoride phosphors:why purity matters[J].ACS Appl. Mater. Interfaces, 2018, 10(22):18845-18856.
XU Y D, WANG L, QU B Y, et al.. The role of co-dopants on the luminescent properties of α-Al2O3: Mn4+ and BaMgAl10O17: Mn4+[J].J. Am. Ceram. Soc., 2019, 102:2737-2744.
DUAN C J, DELSING A C A, HINTZEN H T. Photoluminescence properties of novel red-emitting Mn2+- activated MZnOS (M=Ca, Ba) phosphors[J].Chem. Mater., 2009, 21(6):1010-1016.
WEI Y, HAN X X, SONG E H, et al.. Photoluminescence and phosphorescence of Mn2+ ion activated green phosphor Na2ZnSiO4: Mn2+ synthesized by self-reduction[J].Mater. Res. Bull., 2019, 113:90-96.
DONG L P, ZHANG L, JIA Y C, et al.. Enhancing luminescence and controlling the Mn valence state of Gd3Ga5-x-δAlx-y+δO12: yMn phosphors by the design of the garnet structure[J].ACS Appl. Mater. Interfaces, 2020, 12(6):7334-7344.
YE T N, LI S, WU X Y, et al.. Sol-gel preparation of efficient red phosphor Mg2TiO4: Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+[J].J. Mater. Chem. C, 2013, 1(28):4327-4333.
SINGH V, NATARAJAN V, ZHU J J. Luminescence and EPR investigations of Mn activated calcium aluminate prepared via combustion method[J].Opt. Mater., 2007, 30(3):468-472.
FANG M H, WU W L, JIN Y, et al.. Control of luminescence by tuning of crystal symmetry and local structure in Mn4+-activated narrow band fluoride phosphors[J].Angew. Chem. Int. Ed., 2018, 57(7):1797-1801.
GU G R, XIANG W D, YANG C, et al.. Synthesis and luminescence properties of a H2 annealed Mn-doped Y3Al5O12: Ce3+ single crystal for WLEDs[J].CrystEngComm, 2015, 17(24):4554-4561.
SEKIGUCHI D, ADACHI S. Synthesis and photoluminescence spectroscopy of BaGeF6: Mn4+ red phosphor[J].Opt. Mater., 2015, 42:417-422.
AZAMAT D V, DEJNEKA A, LANCOK J, et al.. Electron paramagnetic resonance studies of manganese centers in SrTiO3:non-Kramers Mn3+ ions and spin-spin coupled Mn4+ dimers[J].J. Appl. Phys., 2012, 111(10):104119-1-6.
SUTTON S R, LANZIROTTI A, NEWVILLE M, et al.. Oxybarometry and valence quantification based on microscale X-ray absorption fine structure (XAFS) spectroscopy of multivalent elements[J].Chem. Geol., 2020, 531:119305.
TAKEDA E, XIE R J, HIROSAKI N, et al.. Manganese valence and coordination structure in Mn, Mg-codoped γ-AlON green phosphor[J].J. Solid State Chem., 2012, 194:71-75.
ABREU C M, SILVA R S, VALERIO M E G, et al.. Color-control of the persistent luminescence of cadmium silicate doped with transition metals[J].J. Solid State Chem., 2013, 200:54-59.
ZAITSEVA N A, ONUFRIEVA T A, BARYKINA J A, et al.. Magnetic properties and oxidation states of manganese ions in doped phosphor Zn2SiO4: Mn[J].Mater. Chem. Phys., 2018, 209:107-111.
0
浏览量
1798
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构