浏览全部资源
扫码关注微信
东北师范大学 先进光电子功能材料研究中心 紫外光发射材料与技术教育部重点实验室,吉林 长春,130024
纸质出版日期:2011-10-22,
网络出版日期:2011-10-22,
收稿日期:2011-4-2,
修回日期:2011-5-22,
扫 描 看 全 文
王雷, 徐海阳, 李兴华, 刘益春. 氮等离子体辅助脉冲激光沉积生长 p型ZnO∶N薄膜的光学和电学性质[J]. 发光学报, 2011,32(10): 977-982
WANG Lei, XU Hai-yang, LI Xing-hua, LIU Yi-chun. Optical and Electrical Properties of p-type ZnO∶N Films Grown by N-plasma Assisted Pulsed Laser Deposition[J]. Chinese Journal of Luminescence, 2011,32(10): 977-982
王雷, 徐海阳, 李兴华, 刘益春. 氮等离子体辅助脉冲激光沉积生长 p型ZnO∶N薄膜的光学和电学性质[J]. 发光学报, 2011,32(10): 977-982 DOI:
WANG Lei, XU Hai-yang, LI Xing-hua, LIU Yi-chun. Optical and Electrical Properties of p-type ZnO∶N Films Grown by N-plasma Assisted Pulsed Laser Deposition[J]. Chinese Journal of Luminescence, 2011,32(10): 977-982 DOI:
通过氮气等离子体辅助脉冲激光沉积(PLD)技术制备了氮掺杂氧化锌(ZnO∶N)薄膜。经过低温快速热退火(RTA)处理后
ZnO∶N薄膜呈现p型导电特性。利用X射线光电子能谱(XPS)、光致发光(PL)和霍尔测量对ZnO∶N薄膜中N的化学状态及其光学和电学性质进行了系列的研究。结果表明:所制得的p型ZnO∶N薄膜为高度补偿半导体;RTA工艺不仅可以激活薄膜中更多的N受主
还可以弱化由薄膜中的施主缺陷造成的自补偿效应。在低温PL光谱中观察到了3种与氮受主相关的光发射
并且通过自由电子-受主(FA)辐射复合光发射确定了薄膜中N受主的离化能(128 meV)。随着退火温度的升高
施主-受主对发射峰呈现了略微的红移现象
这可以通过势能波动模型加以理解。
Nitrogen-doped ZnO (ZnO∶N) films were grown by N-plasma assisted pulsed laser deposition. The p-type conductivities were achieved by post low-temperature rapid thermal annealing (RTA). The N chemical states
optical and electrical properties of ZnO∶N films were systematically studied by X-ray photoelectron spectroscopy (XPS)
photoluminescence (PL) and Hall measurements. The results revealed that the obtained p-type ZnO∶N films are highly compensated semiconductor
and the RTA process can activate more N acceptors and reduce the self-compensation of intrinsic donor defects. Three N acceptor-related emissions were observed in low-temperature PL spectra. The ionization energy of N acceptor was determined as about 128 meV from free-electron-to-acceptor (FA) transition. Interestingly
donor-acceptor pair (DAP) emission showed a slight redshift with increasing annealing temperature. This phenomenon was understood in terms of a potential fluctuation model.
p型ZnO∶N薄膜PLD光学和电学性质
p-typeZnO∶N filmsPLDoptical and electrical properties
Klingshirn C. ZnO: From basics towards applications [J]. Phys. Status Sol. B, 2007, 244 (9):3027-3073.[2] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett., 1997, 70 (17):2230-2232.[3] Lee E C, Kim Y S, Jin Y G, et al. Compensation mechanism for N acceptors in ZnO [J]. Phys. Rev. B, 2001, 64 (8):085120-1-5.[4] Gao Xiaoqi, Guo Zhiyou, Zhang Yufei, et al. The electronic structure and optical properties of Al-N codoped ZnO [J]. Chin. J. Lumin. (发光学报), 2010, 31 (4):409-514 (in Chinese).[5] Kobayashi A, Sankey O F, Dow J D. Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO [J]. Phys. Rev. B, 1983, 28 (2):946-956.[6] Limpijumnong S, Li X, Wei S H, et al. Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO [J]. Appl. Phys. Lett., 2005, 86 (21):211910-1-3.[7] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nature Mater., 2005, 4(1) :42-46.[8] Fons P, Tampo H, Kolobov A V, et al. Direct observation of nitrogen location in molecular beam epitaxy grown nitrogen-doped ZnO [J]. Phys. Rev. Lett., 2006, 96 (4):045504-1-3.[9] Epurescu G, Dinescu G, Moldovan A, et al. p-type ZnO thin films grown by RF plasma beam assisted pulsed laser deposition [J]. Superlattices Microstruct., 2007, 42 (1):79-84.[10] Chen S F, Zhao W, Zhang S J, et al. Preparation, characterization and photocatalytic activity of N-containing ZnO powder [J]. Chem. Eng. J., 2009, 148 (2-3):263-269.[11] Lin Lan, Ye Zhizhen, Gong Li, et al. Fabrication of Na-N codoped p-type ZnO films by RF reactive magnetron sputtering and post-annealing [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):199-203 (in Chinese).[12] Li X H, Xu H Y, Zhang X T, et al. Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent x-ray photoelectron spectroscopy [J]. Appl. Phys. Lett., 2009, 95 (19):191903-1-3.[13] Perkins C L, Lee S H, Li X N, et al. Identification of nitrogen chemical states in N-doped ZnO via X-ray photoelectron spectroscopy [J]. J. Appl. Phys., 2005, 97 (3):034907.[14] Ogata K, Komuro T, Hama K, et al. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy [J]. Appl. Surf. Sci., 2004, 237 (1-4):348-351.[15] Zhang J Y, Cong L, Wan H, et al. Green-emission and n-type conductivity of ZnO:Zn films obtained using vapor deposition method [J]. Appl. Surf. Sci., 2009, 255 (6):3530-3533.[16] Ryu Y R, Lee T S, White H W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J]. Appl. Phys. Lett., 2003, 83 (1):87-89.[17] Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2002, 81 (10):1830-1832.[18] Sun J W, Lu Y M, Liu Y C, et al. Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy [J]. J. Appl. Phys., 2007, 102 (4):043522-1-7.[19] Behringer M, Bume P, Gutowski J, et al. Compensation mechanisms in ZnSe:N and codoped ZnSe∶N∶Cl [J]. Phys. Rev. B, 1998, 57 (20):12869-12873.[20] Gislason H P, Yang B H, Linnarsson M. Shifting photoluminescence bands in high-resistivity Li-compensated GaAs [J]. Phys. Rev. B, 1993, 47 (15):9418-9424.
0
浏览量
1043
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构