浏览全部资源
扫码关注微信
1. 中国科学院 研究生院 北京,100049
2. 中国科学院 长春光学精密机械与物理研究所 激发态物理重点实验室,吉林 长春,130033
收稿日期:2010-01-20,
修回日期:2010-06-05,
网络出版日期:2010-09-21,
纸质出版日期:2010-09-21
移动端阅览
于淑珍, 缪国庆, 金亿鑫, 张立功, 宋 航, 蒋 红, 黎大兵, 李志明, 孙晓娟. Si衬底上InP纳米线的晶体结构和光学性质[J]. 发光学报, 2010,31(5): 767-772
YU Shu-zhen, MIAO Guo-qing, JIN Yi-xin, ZHANG Li-gong, SONG Hang, JIANG Hong, LI Da-bing, LI Zhi-ming, SUN Xiao-juan. The Crystal Structure and Optical Properties of InP Nanowires Grown on Si Substrate[J]. 发光学报, 2010,31(5): 767-772
于淑珍, 缪国庆, 金亿鑫, 张立功, 宋 航, 蒋 红, 黎大兵, 李志明, 孙晓娟. Si衬底上InP纳米线的晶体结构和光学性质[J]. 发光学报, 2010,31(5): 767-772 DOI:
YU Shu-zhen, MIAO Guo-qing, JIN Yi-xin, ZHANG Li-gong, SONG Hang, JIANG Hong, LI Da-bing, LI Zhi-ming, SUN Xiao-juan. The Crystal Structure and Optical Properties of InP Nanowires Grown on Si Substrate[J]. 发光学报, 2010,31(5): 767-772 DOI:
采用金属有机化学气相沉积技术
利用自催化法
在Si(100)、(111)衬底上成功生长了InP纳米线。利用扫描电镜观察样品表面
在Si(100)、(111)衬底上生长的纳米线形貌相似
纳米线面密度不同。利用X射线衍射和透射电镜研究纳米线的生长取向和晶体结构
结果显示纳米线具有闪锌矿结构
生长方向〈111〉
并且具有层状孪晶结构。与InP体材料相比
纳米线的光致发光峰位蓝移
半峰全宽增大
拉曼散射TO和LO峰向低波数频移
频移随激发光功率减弱而减小。
Self-catalyzed InP nanowires were grown on Si (100) and Si (111) substrates by metal-organic chemical vapor deposition. Morphology
crystal structure
and optical properties of the nanowires were investigated. Using scanning electron microscope (SEM)
we found that the morphology of the InP nanowires grown on Si (100) was similar with that of the InP nanowires grown on Si (111). The only difference between them was the density of the nanowires. Most nanowires are long and straight; the angles between the nanowires and the Si substrate are diverse. This was attributed to the native oxide on Si substrates. The X-ray diffraction results showed that two peaks of InP (111) and InP (220) was able to be seen in the spectra. Two more peaks of InP (200) and InP (311) were observed if we continue to supply PH
3
for 15 min after the nanowires growth for 7 min. The InP (220)
InP (311)
and InP (200) originated from InP crystal on the tip of the nanowires. Only the InP (111) originated from the InP nanowires. The transmission electron microscope (TEM) and transmission electron diffraction (TED) results showed that the nanowires exhibit zinc-blende (ZB) crystal structure; the main growth direction of the nanowires was 〈111〉; the nanowire has twin stacking faults. Temperature-dependent photoluminescence (PL) spectra of Fe doped InP substrate and InP nanowires grown on Si (100) were measured in the rages of 80 to 300 K. The PL peak at 1.425 eV for 80 K
for InP nanowires
shifted to 1.379 eV at 300 K
while the PL peak energy of InP substrate was 1.413 eV and 1.349 eV
respectively. The reasons for the blue-shift of the nanowires could be the existence of twin stacking faults. Due to laser-induced heating
the TO and LO phonon peaks of the nanowires revealed downshift and asymme-tric broadening compared with those of bulk InP at room temperature.
Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electro-nics
. Nature, 2002, 415 (6872):617-620.
Dayeh S A, Aplin D P R, Zhou X T, et al. High electron mobility InAs nanowire field-effect transistors
. Small, 2007, 3 (2):326-332.
Parkinson P, Lloyd-Hughes J, Gao Q, et al. Transient terahertz conductivity of GaAs nanowires
. Nano Lett., 2007, 7 (7):2162-2165.
Logeeswaran V J, Sarkar A, Islam M S, et al. A 14-ps full width at half maximum high-speed photoconductor fabricated with intersecting InP nanowires on an amorphous surface
. Appl. Phys. A: Mater. Sci. Process, 2008, 91 (1):1-5.
Kasai S, Hasegawa H. GaAs and InGaAs single electron hexagonal nanowire circuits based on binary decision diagram logic architecture
. Physica E, 2002, 13 (2-4):925-929.
Thelander C, Martensson T, Bjork M T, et al. Single-electron transistors in heterostructure nanowires
. Appl. Phys. Lett., 2003, 83 (10):2052-2054.
Bryllert T, Wernersson L E, Froberg L E, et al. Vertical high-mobility wrap-gated InAs nanowire transistor
. IEEE Electron Device Lett., 2006, 27 (5):323-325.
Roest A L, Verheijen M A, Wunnicke O, et al. Position-controlled epitaxial Ⅲ-Ⅴ nanowires on silicon
. Nanotech-nology, 2006, 17 (11):S271-S275.
Zhao Z, Yadavalli K, Hao Z, et al. Direct integration of Ⅲ-Ⅴ compound semiconductor nanostructures on silicon by selective epitaxy
. Nanotechnology, 2009, 20 (3):035304-1-7.
Tateno K, Hibino H, Gotoh H, et al. Vertical GaP nanowires arranged at atomic steps on Si(111) substrates
. Appl. Phys. Lett., 2006, 89 (3):033114-1-3.
Bakkers E P A M, Verheijen M A. Synthesis of InP nanotubes
. J. Am. Chem. Soc., 2003, 125 (12):3440-3343.
Poole P J, Lefebvre J, Fraser J. Spatially controlled, nanoparticle-free growth of InP nanowires
. Appl. Phys. Lett., 2003, 83 (10):2055-2057.
Cornet D M, Mazzetti V G M, LaPierre R R. Onset of stacking faults in InP nanowires grown by gas source molecular beam epitaxy
. Appl. Phys. Lett., 2007, 90 (1):013116-1-3.
Watanabe Y, Hibino H, Bhunia S, et al. Site-controlled InP nanowires grown on patterned Si substrates
. Physica E, 2004, 24 (1-2):133-137.
Ihn S G, Song J I, Kim T W, et al. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates
. Nano Lett., 2007, 7 (1):39-44.
Mrtensson T, Patrik C, Svensson T, et al. Epitaxial Ⅲ-Ⅴ nanowires on silicon
. Nano Lett., 2004, 4 (10): 1987-1990.
Tomioka K, Motohisa J, Hara S, et al. Control of InAs nanowire growth directions on Si
. Nano Lett., 2008, 8 (10): 3475-3480.
Ihn S G, Song J I, Kim Y H, et al. GaAs nanowires on Si substrates grown by a solid source molecular beam epitaxy
. Appl. Phys. Lett., 2006, 89 (5): 053106-1-3.
Bao X Y, Soci C, Susac D, et al. Heteroepitaxial growth of vertical GaAs nanowires on Si (111) substrates by metal organic chemical vapor deposition
. Nano Lett., 2008, 8 (11):3755-3760.
Detz H, Klang P, Andrews A M, et al. Growth of one-dimensional Ⅲ-Ⅴ structures on Si nanowires and pre-treated planar Si surfaces
. J. Cryst. Growth, 2009, 311 (7):1859-1862.
Allen J E, Rhemesath E, Perea D E, et al. High-resolution detection of Au catalyst atoms in Si nanowires
. Nat. Nanotechnology, 2008, 3 (3):168-173.
Oh S H, Benthem K V, Molina S I, et al. Point defect configurations of supersaturated Au atoms inside Si nanowires
. Nano Lett., 2008, 8 (4):1016-1019.
Novotny C J, Yu P K L. Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition
. Appl. Phys. Lett., 2005, 87 (20):203111-1-3.
Bhunia S, Kawamura T, Fujikawa S, et al. Vapor-liquid-solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy
. Thin Solid Films, 2004, 464-465 (1):244-247.
Xu X, Wei W, Qiu X, et al. Synthesis of InAs nanowires via a low-temperature solvothermal route
. Nanotechnology, 2006, 17 (14):3416-3420.
Gudiksen M S, Wang J, Lieber C M. Synthetic control of the diameter and length of single crystal semiconductor nanowires
. J. Phys. Chem. B, 2001, 105 (19):4062-40644.
Hiruma K, Yazawa M, Katsuyama T, et al. Growth and optical properties of nanometer-scale GaAs and InAs whiskers
. J. Appl. Phys., 1995, 77 (2):447-462.
Mattila M, Hakkarainen T, Jiang H, et al. Effect of substrate orientation on the catalyst-free growth of InP nanowires
. Nanotechnology, 2007, 18 (15):155301-155304.
Wang J, Gudiksen M S, Duan X, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires
. Science, 2001, 293 (5534):1455-1457.
Woo R L, Xiao R, Kobayashi Y, et al. Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon(111)
. Nano Lett., 2008, 8 (12):4664-4669.
Yu S, Miao G, Jin Y, et al. Growth and optical properties of catalyst-free InP nanowires on Si (100) substrates
. Physica E, 2010, 42 (5):1540-1543.
0
浏览量
180
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构