浏览全部资源
扫码关注微信
1. 中国科学院 研究生院, 北京 100039
2. 中国科学院 长春光学精密机械与物理研究所 激发态物理重点实验室, 吉林 长春 130033
收稿日期:2009-12-03,
修回日期:2010-03-10,
网络出版日期:2010-08-27,
纸质出版日期:2010-08-27
移动端阅览
冉营营, 赵军伟, 孔祥贵. NaYF<sub>4</sub> ∶ Eu<sup>3+</sup>纳米粒子和六棱柱的水热控制合成与发光性质[J]. 发光学报, 2010,31(4): 556-560
RAN Ying-ying, ZHAO Jun-wei, KONG Xiang-gui. Controlled Synthesis and Luminescence Properties of NaYF<sub>4</sub> ∶ Eu<sup>3+</sup> Nanoparticles/Hexagonal Prism[J]. 发光学报, 2010,31(4): 556-560
冉营营, 赵军伟, 孔祥贵. NaYF<sub>4</sub> ∶ Eu<sup>3+</sup>纳米粒子和六棱柱的水热控制合成与发光性质[J]. 发光学报, 2010,31(4): 556-560 DOI:
RAN Ying-ying, ZHAO Jun-wei, KONG Xiang-gui. Controlled Synthesis and Luminescence Properties of NaYF<sub>4</sub> ∶ Eu<sup>3+</sup> Nanoparticles/Hexagonal Prism[J]. 发光学报, 2010,31(4): 556-560 DOI:
以柠檬酸三钠为螯合剂
通过控制反应条件
利用水热法分别合成出立方相 NaYF
4
∶ Eu
3+
球形纳米粒子和六角相 NaYF
4
∶ Eu
3+
六角微米棱柱。利用X 射线粉末衍射(XRD)、场扫描电子显微镜 (SEM)、红外吸收 (FTIR)
以及发光光谱等手段对产物的物相结构、形貌和荧光性能进行了分析。结果显示产物的晶格结构和柠檬酸分子的选择性吸附是晶体形貌可控的主要原因。在395 nm 光激发下
NaYF
4
∶ Eu
3+
样品显示出较强的橙色 (588 nm)和红色(614 nm) 发光
分别来自于Eu
3+
离子
5
D
0
7
F
1
和
5
D
0
7
F
2
的跃迁。从
5
D
0
7
F
2
与
5
D
0
7
F
1
跃迁的强度比可以推断在立方相纳米粒子的晶格中 Eu
3+
离子更多地占据反演中心的格位。
NaYF
4
∶ Eu
3+
nanoparticles/hexagonal prism are successfully prepared by hydrothermal method using trisodium citrate as chelator. The obtained samples were characterized by X-ray powder diffraction (XRD)
scanning electron microscopy (SEM)
Fourier transform infrared (FT-IR) spectra and luminescence spectra. The morphology and crystal structure can be well controlled by adjusting the hydrothermal reaction parameters and the molar ratio of Citrate/
Ln
. The size of NaYF
4
∶ Eu
3+
nanoparticles is about 50 nm
and the size of NaYF
4
∶ Eu
3+
hexagonal prism is about 1 000 nm1 500 nm (side lengththickness). The possible formation mechanism of NaYF
4
∶ Eu
3+
nanoparticles/hexagonal prism are proposed based on the experimental results. It was found that the morphology of samples is determined by the intrinsic crystal structure and the selective adsorption of citrate. The FT-IR spectra prove the presence of the citrate ligands at the surface of the nanoparticles/hexagonal prism. Therefore
the NaYF
4
∶ Eu
3+
nanoparticles can be dispersed in the water. The NaYF
4
∶ Eu
3+
samples exhibit strong orange (588 nm) and red (614 nm) emissions under 395 nm excitation
which are assigned to the
5
D
0
7
F
2
and
5
D
0
7
F
1
transition
respectively. From the intensity ratio of
5
D
0
7
F
2
and
5
D
0
7
F
1
transitions
it can be concluded that more Eu
3+
ions are occupied the sites of inversion centers in the cubic-phase NaYF
4
∶ Eu
3+
nanoparticles.
Milliron D J, Hughes S M, Cui Y, et al. Colloidal nanocrystal heterostructures with linear and branched topology
. Nature, 2004, 430 (6996):190-195.
Zhao J, Sun Y, Kong X, et al. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4 ∶ Yb3+, Er3+ nanocrystals/submicroplates at low doping level
. J. Phys. Chem. B, 2008, 112 (49):15666-15672.
Li Yue, Zhai Haiqing, Yang Kuisheng, et al. The upconversion luminescence properties of nanocrystal NaYF4 ∶ Er3+ ,Tm3+ , Yb3+ synthesized by hydrothermal method
. Chin. J. Lumin.(发光学报), 2009, 30 (2):239-242 (in Chinese).
Sun Jiayue, Yang Zhiping, Du Haiyan. Upconversion luminescence properties of NaYF4 ∶ Tm3+, Yb3+ synthesized by co-precipitation method
. Chin. J. Lumin. (发光学报), 2009, 30 (2):195-200 (in Chinese).
Tian Z R, Voigt J A, Liu J, et al. Complex and oriented ZnO nanostructures
. Nat. Mater., 2003, 2 (12):821-826.
Lin-Vien D, Norman B Colthup, William G Fateley, et al. The Handbook of IR and Raman Characteristic Frequencies of Organic Molecules
. New York: Academic Press, 1991, 137.
Wang Y, Wong J F, Teng X W, et al. Pulling nanoparticles into water:phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of -cyclodextrin
. Nano Lett., 2003, 3 (11):1555-1559.
Li Yanhong, Hong Guangyan. Synthesis and spectra properties of nanocrystalline GdPO4 ∶ Eu3+
. Chin. J. Lumin.(发光学报), 2005, 26 (5):587-591 (in Chinese).
0
浏览量
83
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构