浏览全部资源
扫码关注微信
暨南大学 理工学院 物理系,广东 广州,510632
收稿日期:2009-05-26,
修回日期:1900-01-02,
网络出版日期:2010-06-30,
纸质出版日期:2010-06-30
移动端阅览
侯林涛, 刘彭义, 张靖磊, 等. MoO3作空穴注入层的有机电致发光器件[J]. 发光学报, 2010,31(3):326-330.
HOU Lin-tao, LIU Peng-yi, ZHANG Jing-lei, et al. Improved Hole-injection Contact by Employing an Ultra-thin MoO3 Carrier Injection Layer[J]. Chinese journal of luminescence, 2010, 31(3): 326-330.
研究了三氧化钼(MoO
3
)薄层作为有机电致发光器件空穴注入层的器件性能和注入机制。发现1 nm厚度下发光器件性能最佳
器件的最大电流效率比对比发光器件的最大电流效率提高1.6倍。器件的电容曲线表明MoO
3
薄层能有效提高空穴载流子的注入
多数载流子开始注入的拐点大约降低了9 V。单空穴载流子电流曲线说明MoO
3
器件的电流注入是空间电荷受限电流注入机制
MoO
3
使阳极界面处形成欧姆接触
而对比器件的电流注入是陷阱电荷受限电流注入机制。器件的光伏曲线进一步说明器件性能的提高是由于MoO
3
层能使阳极界面能级分布发生改变
1 nm MoO
3
厚度下器件的内建电势从对比器件的0.25 V提高到了0.8 V
有效降低了空穴注入势垒
提高了器件性能
但过厚的MoO
3
层由于增加了器件的串联内阻
会导致器件性能降低。
An efficient hole-injection contact was achieved for organic light-emitting diodes (OLEDs) based on molybdenum oxide (MoO
3
) as the buffer layer on indium tin oxide. The significant effect of MoO
3
is that the devices show low operational voltage and high electroluminescence efficiency in a wide range of MoO
3
thickness. The device with a 1 nm-thick MoO
3
layer shows the best performance
the current efficiency is enhanced by 1.6 times by comparing with the control device. Capacitance-voltage measurement demonstrated that hole injection is enhanced in low operational voltage through the addition of MoO
3
. Results of the hole-only devices revealed that ohmic hole injection is formed at ITO/MoO
3
/NPB interface. Photovoltaic measurements confirmed that the improved hole injection is due to the reduction of barrier height
which is resulted from the addition of transition metal oxide.
. Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51 (12):913-195.
. Wang J, Yang G, Jian Y D, et al. Fabricating cathode separator for OLED by image reverse technique [J]. Chin. J. Lumin. (发光学报), 2007, 28 (2):198-202 (in Chinese).
. Sun Y R, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature, 2006, 440 (7086):908-912.
. Segal M, Singh M, Rivoire K, et al. Extrafluorescent electroluminescence in organic light-emitting devices [J]. Nat. Mater., 2007, 6 (5):374-378.
. Kwong R C, Nugent M R, Michalski L, et al. High operational stability of electrophosphorescent devices [J]. Appl. Phys. Lett., 2002, 81 (1):162-164.
. Aziz H, Popovic Z D. Degradation phenomena in small-molecule organic light-emitting devices [J]. Chem. Mater., 2004, 16 (23):4522-4532.
. Wang J, Song R L, Liu C L, et al. Improved performances for organic light-emitting diodes based on Al2O3-treated indium-tin oxide anode [J]. Chin. Phys. Lett., 2006, 23 (1):3094-3096.
. Li J Z, Yahiro M, Ishida K, et al. Enhanced performance of organic light emitting device by insertion of conducting/insulating WO3 anodic buffer layer [J]. Synth. Met., 2005, 151 (2):141-146.
. Hu W P, Manabe K, Furukawa T, et al. Lowering of operational voltage of organic electroluminescent devices by coating indium-tin-oxide electrodes with a thin CuO<em>x layer [J]. Appl. Phys. Lett., 2002, 80 (15):2640-2461.
. Zhang H M, Choy W C H. Highly efficient organic light-emitting devices with surface-modified metal anode by vanadium pentoxide [J]. J. Phys. D: Appl. Phys., 2008, 41 (6):062003-1-4.
. Qiu C F, Chen H Y, Xie Z L, et al. Praseodymium oxide coated anode for organic light-emitting diode [J]. Appl. Phys. Lett., 2002, 80 (19):3485-3487.
. Chan I M, Hong F C. Improved performance of single layer and double-layer OLEDs by nickel oxide coated ITO anode [J]. Thin Solid Films, 2004, 450 (2):304-311.
. You H, Dai Y F, Zhang Z Q, et al. Improved performances of organic light-emitting diodes with metal oxide as anode buffer [J]. J. Appl. Phys., 2007, 101 (2):026105-1-3.
. Matsushima T, Jin G H, Murata H. Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide [J]. J. Appl. Phys., 2008, 104 (5):054501-1-6.
. Ishii H, Sugiyama K, Ito E, et al. Energy level alignment and interfacial electronic structures at organic/metal and orga-nic/organic interfaces [J]. Adv. Mater., 1998, 11 (8):605-625.
. Burrows P E, Shen Z, Bulovic V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J]. J. Appl. Phys., 1996, 79 (10):7991-8006.
. Campbell I H, Rubin S, Zawodzinski T A, et al. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers [J]. Phys. Rev. B, 1996, 54 (20):14321-14324.
. Peisert H, Knupfer M, Schwieger T, et al. Full characterization of the interface between the organic semiconductor copper phthalocyanine and gold [J]. J. Appl. Phys., 2002, 91 (8):4872-4878.
0
浏览量
110
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构