浏览全部资源
扫码关注微信
1. 合肥工业大学 电物学院,安徽 合肥,230009
2. 安徽建筑工业学院 电信学院,安徽 合肥,230601
3. 中国科学院 固体物理研究所,安徽 合肥,230031
收稿日期:2009-12-12,
修回日期:1900-01-02,
网络出版日期:2010-06-30,
纸质出版日期:2010-06-30
移动端阅览
王 莉, 张广斌, 秦晓英, 等. 新奇纳米结构SiOx的自组织生长及其发光[J]. 发光学报, 2010,31(3):390-394.
WANG Li, ZHANG Guang-bin, QIN Xiao-ying, et al. Self-assembly of SiOxNovel Nanostructures and Their Optical Property[J]. Chinese journal of luminescence, 2010, 31(3): 390-394.
采用化学气相沉积法
以纳米Mg
2
Si和SiO
2
的混合粉体作为硅源
在较低温度自组织生长了大量绳状SiO
x
新奇纳米结构。利用扫描电子显微镜、透射电子显微镜等手段对纳米结构进行了系统表征
并在室温观测到了光致发光
其发光峰峰位在560 nm附近
在此基础上对该纳米结构的生长机理进行了深入的讨论。
Self-assembly of rod-like SiO
x
(x=1~2) nanostructures were formed via chemical vapor deposition method by heating the Mg
2
Si and SiO
2
nanoparticles mixture at low temperature. The nanostructures were analyzed by scanning electron microscopy
transmission electron microscopy
energy dispersive spectroscopy and low-energy electron diffraction methods. The photoluminescence (PL) characterization spectrum of the nanostructures showed a strong peak at 560 nm. Furthermore
the growth mechanism of the SiO
x
nanostructures was discussed qualitatively.
. Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J]. Science, 1997, 277 (5341):1287-1289.
. Ruecks T, Kim K, Joselevich E, et al. Carbon nanotube-based nonvolatile random access memory for molecular computing [J]. Science, 2000, 289 (5476):94-97.
. Ming Z, Cheng F C, Xia W C, et al. Preparation and growth mechanism of well-aligned ZnO nanonails synthesized by chemical vapor deposition [J]. Chin. J. Lumin.(发光学报), 2009, 30 (5):717-721 (in Chinese).
. Yu D P, Hang Q L, Ding Y, et al. Amorphous silica nanowires: Intensive blue light emitters [J]. Appl. Phys. Lett., 1998, 73 (21):3076-3078.
. Wang Y W, Liang C H, Meng G W, et al. Synthesis and photoluminescence properties of amorphous SiOx nanowires [J]. J. Mater. Chem., 2002, 12 (3):651-653.
. Zhu Y Q, Hsu W K, Grobert N, et al. 3D silicon oxide nanostructures: from nanoflowers to radiolarian [J]. J. Mater.Res., 1998, 8 (81):1859-1864.
. Zhu Y Q, Hu W B, Hsu W K, et al. A simple route to silicon-based nanostructures [J]. Adv. Mater., 1999, 11 (10):844-847.
. Wang Z L, Gao R P, Gole J L, et al. Silica nanotubes and nanofiber arrays [J]. Adv. Mater., 2000, 12 (24):1938-1940.
. Chen Y J, Li J B, Han Y S, et al. Self-assembly of Si and SiOx nanostructures [J]. J. Mater. Sci. Lett., 2002, 21 (2):175-177.
. Yu D P, Hang Q L, Ding Y, et al. Si and SiOx nanostructures formed via thermal evaporation [J]. Chem. Phys. Lett., 2001, 344 (5-6):450-456.
. Zhong L, Wang Ruiping P, Gao James L, et al. Silica nanotubes and nanofiber arrays [J]. Adv. Mater., 2000, 12 (24):1938-1940.
. Liu Q, Susan M, Kauzlarich. A new synthetic route for the synthesis of hydrogen terminated silicon nanoparticles [J]. Materials Science and Engineering B, 2002, 96 (1):72-75.
. Pettigrew Katherine A, Liu Qi, Power Philip P, et al. Solution synthesis of alkyl- and alkoxy-capped silicon nanoparticles via oxidation of Mg2Si [J]. Chem. Mater., 2003, 15 (21):4005-4011.
. Sun S H, Meng G W, Zhang M G, et al. Preparation and characterization of oriented silica nanowires [J]. Solid State Commun., 2003, 128 (8):287-290.
. Wang N, Tang Y H, Zhang Y F, et al. Si nanowires grown from silicon oxide [J]. Chem. Phys. Lett., 1999, 299 (2):237-242.
. Pan Z W, Dai Z R, Ma C, et al. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires [J]. J. Am. Chem. Soc., 2002, 124 (8):1817-1822.
. Kanemitsu Y, Ogawa T, Shiraishi K, et al. Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell [J]. Phys. Rev. B, 1993, 48 (7):4883-4886.
. Deak P, Rosenbauer M, Stuzmann M, et al. Siloxene: Chemical quantum confinement due to oxygen in a silicon matrix [J]. Phys. Rev. Lett., 1992, 69 (17):2531-2534.
. Torchynska T V, Cano A D, Rodriguez M M, et al. Hot carriers and excitation of Si/SiOx interface defect photoluminescence in Si nanocrystallites [J]. Phys. B, 2003, 340-342 :1113-1118.
. Zhang Z Y, Wu X L, Shen J C, et al. Light emission from as-prepared and oxidized Si nanowires with diameters of 5~15 nm [J]. J. Crystal Growth, 2005, 285 (4):620-626.
. Hu J Q, Jiang Y, Meng X M, et al. A simple large-scale synthesis of very long aligned silica nanowires [J]. Chem. Phys. Lett., 2003, 367 (3-4):339-342.
. Jambois O, Rinnert H, Devaux X, et al. Influence of the annealing treatment on the luminescence properties of SiO/SiO2 multilayers [J]. J. Appl. Phys., 2006, 100 (12):123504-1-3.
. Rinnert H, Adeola G W, Ardyanian M, et al. 1.54 μm luminescence of Er-doped SiOx and GeOx thin films; A comparative study [J]. Mater. Sci. Eng. B, 2008, 146 (1-3):146-150.
. Rinnert H, Vergnat M. Influence of the barrier thickness on the photoluminescence properties of amorphous Si/SiO multilayers [J]. J. Lumin., 2005, 113 (1-2):64-68.
. Hu Feng, Yi Lixin, Wang Shenwei, et al. Influence of sputtering Ar/O proportion and annealing method on the preparation and photoluminescent properties of silicon nanocrystals [J]. Chin. J. Lumin.(发光学报), 2009, 30 (2):243-246 (in Chinese).
. Cao Xiaolong, Li Qingshan, Wang Qingtao, et al. Temperature properties of photoluminescence of nanocrystalline silicon film/porous alumina hybrid system [J]. Chin. J. Lumin.(发光学报), 2004, 25 (6):725-730 (in Chinese).
0
浏览量
56
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构