浏览全部资源
扫码关注微信
中山大学 光电材料与技术国家重点实验室,广东 广州,510275
收稿日期:2009-08-30,
修回日期:1900-01-02,
网络出版日期:2010-04-30,
纸质出版日期:2010-04-30
移动端阅览
涂爱国, 周 翔. 具有Au/MoO3空穴注入层的有机发光二极管[J]. 发光学报, 2010,31(2):157-161.
TU Ai-guo, ZHOU Xiang. OLEDs with Au/MoO3 Hole Injection Layer[J]. Chinese journal of luminescence, 2010, 31(2): 157-161.
研究了单层MoO
3
(5 nm)和复合Au(4 nm)/MoO
3
(5 nm)HILs对OLEDs器件性能的影响
器件结构为ITO/HIL/NPB(40 nm)/Alq
3
(60 nm)/LiF (1 nm)/Al (100 nm)。与单层MoO
3
HIL的器件相比
具有复合Au/MoO
3
HIL的器件具有较大的电流和亮度。这是由于Au的功函数介于ITO和MoO
3
之间
导致Au的引入提高了空穴的注入效率。
OLEDs have been recognized as charge-injection electroluminescent devices. Using suitable hole injection layer (HIL) can reduce the barrier of hole injection from the anode to the hole transport layer
improve the hole injection
decrease the driving voltage of the OLEDs and enhance the efficiency and stability of the OLEDs. In this article
the OLEDs with structure of ITO/HIL/NPB(40 nm)/Alq
3
(60 nm)/LiF (1 nm)/Al (100 nm)
where the HIL is single MoO
3
(5 nm) layer or composite Au(4 nm)/MoO
3
(5 nm) layers
were reported. It was found that the OLEDs with the composite Au/MoO
3
HIL shows higher current density and luminance than those of the OLEDs with single MoO
3
HIL at the same driving voltage
which indicates that hole injection is improved by further introducing the 4 nm Au between ITO and MoO
3
.
. Tang C W, Van Slyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51 (12):913-915.
. Baldo M A, Obrien D F. High efficient phosphorescent emission from organic electroluminescent diodes [J]. Nature, 1998, 395 (6698):151-154.
. Lei G T, Duan L, Wang L D, et al. Progress of white organic light emitting diodes [J]. Chin. J. Lumin. (发光学报), 2004, 25 (3):221-230 (in Chinese).
. Zhu W Q, Jiang X Y, Zhang Z L, et al. Characteristics and types of interfacial modification of anodes in organic electro-luminescent devices [J]. Function Marterial (功能材料), 2004, 25 (3):276-280 (in Chinese).
. Hang S L, Yuan Y B, Lian J L, et al. The effects of ITO anode resistance on OLEDs performance [J]. Chin. J. Lumin. (发光学报), 2008, 29 (3):429-432 (in Chinese).
. Ma Tao, Yu Junsheng, Li Lu, et al. Characterization of organic light-emitting devices based on NPB doped in poly(N-vinylcarbazole) matrix [J]. Chin. J. Lumin. (发光学报), 2008, 29 (5):809-814 (in Chinese).
. Tang Rong, He Zhiqin, Mu linping, et al. Electroluminescence from conjugated polyphenylenebenzobisoxazole [J]. Chin. J. Lumin. (发光学报), 2008, 29 (6):950-956 (in Chinese).
. Yuan Jianting, Peng Yingquan, Yang Qingsen, et al. Effect of mobility on the distribution of electric field and carrier density in single layer organic light emitting device [J]. Chin. J. Lumin. (发光学报), 2008, 29 (6):962-966 (in Chinese).
. Zhao T, Ding H L, Shi G Y, et al. Organic light-emitting diodes using cascade energy transfer process [J]. Chin. J. Lumin. (发光学报), 2009, 30 (3):332-336 (in Chinese).
. Ding Guiying, Wang Jin, Wang Guangde, et al. High luminance white organic light-emitting devices based on rubrene dopant [J]. Chin. J. Liq. Cryst. Dipl. (液晶与显示), 2008, 23 (1):5-10 (in Chinese).
. Shirota Y, Kuwabara Y, Inada H. Multilayered organic electroluminescent device using a novel starburst molecule, 4,4 ,4-tris(3methylphenylphenylamino)triphenylamine, as a hole transport material [J]. Appl. Phys. Lett., 1994, 65 (7):807-809.
. Chkoda L, Heske C, Sokolowski M, et al. Improved band alignment for hole injection by an interfacial layer in organic light emitting devices [J]. Appl. Phys. Lett., 2000, 77 (8):1093-1095.
. Van Slyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1996, 69 (15):2160-2162.
. Yang Y, Heeger A J. Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency [J]. Appl. Phys. Lett., 1994, 64 (10):1245-1247.
. Scott J C, Carter S A, Karg S, et al. Polymeric anodes for organic light-emitting diodes [J]. Synth. Met., 1997, 85 (1-3):1197-1200.
. Shen Y L, Jacobs D B, Malliaras G G, et al. Modification of indium tin oxide for improved hole injection in organic light emitting diodes [J]. Adv. Mater., 2001, 13 (16):1234-1238.
. Gyoutoku A, Hara S, komatsu T, et al. An organic electroluminescent dot-matrix display using carbon underlayer [J]. Synth. Met., 1997, 91 (1-3):73-75.
. Chan I M, Hsu T Y, Hong F C. Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode [J]. Appl. Phys. Lett., 2002, 81 (10):1899-1901.
. Xiao B W, Shang Y F, Meng M, et al. Enhancement of hole injection with an ultra-thin Ag2O modified anode in organic light-emitting diodes [J]. Microelectronics Journal, 2005, 36 (2):105-108.
. Tokito S, Noda K, Taga Y. Metal oxides as a hole-injecting layer for an organic electroluminescent device [J]. J. Phys. D: Appl. Phys., 1996, 29 (11):2750-2753.
. Qiu C F, Peng H J, Chen H Y, et al. Top-eitting OLED using praseodymium oxide coated platinum as hole injectors [J]. IEEE Transactions on Electron Devices, 2004, 51 (7):1207-1210.
. Zhang H M, Choy W C H. Indium tin oxide modified by Au and vanadium pentoxide as an efficient anode for organic light-emitting devices [J]. IEEE Transactions on Electron Devices, 2008, 55 (9):2517-2520.
. You H, Dai Y F, Zhang Z Q, et al. Improved performances of organic light-emitting diodes with metal oxide as anode buffer [J]. J. Appl. Phys., 2007, 101 (2):026105-1-3.
. Matsushima T, Kinoshita Y, Murata H. Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole transporting layers [J]. Appl. Phys. Lett., 2007, 91 (25):253504-1-3.
. Lee H, Cho S W, Han K, et al. The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl- 4,4'-diamine interfaces [J]. Appl. Phys. Lett., 2008, 93 (4):043308-1-3.
. Tang J X, Li Y Q, Zheng L R, et al. Anode/organic interface modification by plasma polymerized fluorocarbon films [J]. J. Appl. Phys., 2004, 95 (8):4397-4403.
0
浏览量
87
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构