浏览全部资源
扫码关注微信
1. 中山大学 光电材料与技术国家重点实验室,广东 广州,510275
2. 中山大学 化学与化工学院,广东 广州,510275
收稿日期:2009-09-10,
修回日期:1900-01-02,
网络出版日期:2010-02-20,
纸质出版日期:2010-02-20
移动端阅览
姜小芳, 李小龙, 曹俊枫, 等. 新型ZnO纳米针的双光子激射特性[J]. 发光学报, 2010,31(1):109-113.
JIANG Xiao-fang, LI Xiao-long, CAO Jun-feng, et al. Stimulated Emission Property of Novel ZnO Nanoneedle Pumped by Two-photon[J]. Chinese journal of luminescence, 2010, 31(1): 109-113.
室温下采用640 nm的飞秒脉冲激光泵浦ZnO纳米针得到双光子诱导的光致发光谱。结合单光子下的研究结果
实验分析了双光子泵浦下样品随着受激能量增强产生的三种紫外发射行为并归结为自由激子自发辐射
激子-激子散射和电子空穴等离子体复合。双光子泵浦下ZnO纳米针的受激阈值是4.82 GW/cm
2
远小于其他ZnO微纳材料的双光子阈值(TW/cm
2
)。结果表明:这种新型的ZnO纳米针结构能更有效地产生双光子激射
这在纳米激光器方面将会有很大的应用前景。
Stimulated emissions in a novel nanoneedle ZnO composite with two complex needle parts were investigated using the two-photon induced time-resolved photoluminescence pumped with the femtosecond pulse at the wavelength of 640 nm in room temperature. Comparing with the results of single-photon pumped
we observe three operation mechanisms of two-photon induced UV emission behaviors with the excitation power increasing:spontaneous emission of free-exciton
exciton-exciton(E-E) scattering and electron-hole-plasma (EHP) recombination. The threshold of two-photon excitation emission is 4.82 GW/cm
2
which is far lower than that of mirconeedle ZnO reported recently and the other nanostructure of ZnO(TW/cm
2
).Our research results proved that the new ZnO nanoneedle structure with UV emission efficiently induced two-photon shows great potential applications in the two-photon induced nanolasers fields.
. gür V, Alivov Ya I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98 (4):041301-1-3.
. Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature [J]. Appl. Phys. Lett., 2002, 81 (19):3648-3650.
. Emanetoglu N W, Zhu J, Chen Y, et al. Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on γ-plane sapphire [J]. Appl. Phys. Lett., 2004, 85 (17):3702-3704.
. Heo Y W, Tien L C, Kwon Y, et al. Depletion-mode ZnO nanowire field-effect transistor [J]. Appl. Phys. Lett., 2004, 85 (12):2274-2276.
. Qiu Z R, Wong K S, Wu M, et al. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation [J]. Appl. Phys. Lett., 2004, 84 (15):2739-2741.
. Zhang C F, Dong Z W, You G J, et al. Observation of two-photon-induced photoluminescence in ZnO microtubes [J]. Appl. Phys. Lett., 2005, 87 (5):051920-1-3.
. Zhang C F, Dong Z W, You G J, et al. Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires [J]. Appl. Phys. Lett., 2006, 89 (4):042117-1-3.
. Chelnokov E V, Bityurin N, Ozerov I, et al. Two-photon pumped random laser in nanocrystalline ZnO [J]. Appl. Phys. Lett., 2006, 89 (17):171119-1-3.
. Chelnokov E V, Bityurin N M, Marine W. Two-photon pumped zinc oxide random laser [J]. SPIE, 2005, 5975 :59750O-1-9.
. Dong Z W, Zhang C F, You G J, et al. Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal [J]. J. Physics-Condensed Matter, 2007, 19 (21):216202-1-7.
. Dai D C, Xu S J, Shi S L, et al. Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO [J]. IEEE Photonics Technology Lett., 2006, 18 (14):1533-1535.
. Xu P, Wen X, Zheng Z, et al. Two-photon optical characteristics of zinc oxide in bulk, low dimensional and nanoforms [J]. J. Lumin., 2007, 126 (2):641-643.
. Zhu G P, Xu C X, Zhu J, et al. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle [J]. Appl. Phys. Lett., 2009, 94 (5):051106-1-3.
. Cao H, Wu J Y, Ong H C, et al. Second harmonic generation in laser ablated zinc oxide thin films [J]. Appl. Phys. Lett., 1998, 73 (5):572-574.
. Zhang C F, Dong Z W, You G J, et al. Multiphoton route to ZnO nanowire lasers [J]. Optics Lett., 2006, 31 (22):3345-3347.
. Wang G, Kiehne G T, Wong G K L, et al. Large second harmonic response in ZnO thin films [J]. Appl. Phys. Lett., 2002, 80 (3):401-403.
. Neumann U, Grunwald R, Griebner U, et al. Second-harmonic efficiency of ZnO nanolayers [J]. Appl. Phys. Lett., 2004, 84 (2):170-172.
. Ning C Z. Two-photon lasers based on intersubband transitions in semiconductor quantum wells [J]. Phys. Rev. Lett., 2004, 93 (18):187403-1-4.
. Zhao D, Andreazza C, Andreazza P, et al. Temperature-dependent growth mode and photoluminescence properties of ZnO nanostructures [J]. Chem. Phys. Lett., 2004, 399 (4-6):522-526.
. Lau S P, Yang H Y, Yu S F, et al. Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates [J]. Appl. Phys. Lett., 2005, 87 (1):013104-1-3.
. Wischmeier L, Voss T, Ruckmann I, et al. Dynamics of surface-excitonic emission in ZnO nanowires [J]. Phys. Rev. B, 2006, 74 (19):195333-1-9.
. Johnson J C, Knutsen K P, Yan H, et al. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers [J]. Nano Lett., 2004, 4 (2):197-204.
. Kwok W M, Djuriic ' A B, Leung Y H, et al. Study of excitonic emission in highly faceted ZnO rods [J]. Chem. Phys. Lett., 2005, 412 (1-3):141-144.
0
浏览量
153
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构