浏览全部资源
扫码关注微信
深圳大学 材料学院, 深圳市特种功能材料重点实验室,广东 深圳,518060
收稿日期:2009-11-20,
修回日期:1900-01-02,
网络出版日期:2010-04-30,
纸质出版日期:2010-04-30
移动端阅览
柳文军, 蔡少敏, 谢红丝, 等. 阴极电沉积ZnO薄膜的取向控制生长[J]. 发光学报, 2010,31(2):214-218.
LIU Wen-jun, CAI Shao-min, XIE Hong-si, et al. Orientation-controlling Growth of Electrodeposited ZnO Films on Cathode[J]. Chinese journal of luminescence, 2010, 31(2): 214-218.
采用阴极电沉积法
在Zn(NO
3
)
2
水溶液中
以304不锈钢为衬底制备了ZnO薄膜
研究了Zn
2+
浓度和电流密度对ZnO薄膜择优取向的影响规律。XRD结果表明:随着Zn
2+
浓度和电流密度增大
ZnO薄膜逐渐由(002)面择优取向生长转变为(101)面择优取向生长;当Zn
2+
浓度为0.005 mol·L
-1
、电流密度为2.0 mA·cm
-2
或Zn
2+
浓度为0.05 mol·L
-1
、电流密度为0.5 mA·cm
-2
时
可以得到(002)面择优取向生长的ZnO薄膜;当Zn
2+
浓度为0.05 mol·L
-1
、电流密度为2.0 mA·cm
-2
时
可以得到(101)面择优取向生长的ZnO薄膜。根据二维晶核理论
通过分析不同生长条件下的过饱和度及其对ZnO的(002)型和(101)型二维晶核形核活化能的影响
对这一规律进行了解释。可见
通过改变Zn
2+
浓度和电流密度能够实现阴极电沉积ZnO薄膜的取向可控生长。
It is important to control the orientation of ZnO film because many properties of ZnO film vary with its preferred orientation. Most of ZnO films ever reported are orientated towards
c
-axis. However
in the light-emitting application
nonpolar or semipolar ZnO films grown not along with
c
-axis are much preferable because the luminous efficiency of the
c
-axis orientated ZnO film is low due to the quantum confined Stark effect. Thus
the study of ZnO film grown along with other than
c
-axis is necessary. In this paper
ZnO films were fabricated on 304 stainless steel substrates by the cathodic electrodeposition in Zn(NO)
3
aqueous solution
and the influences of Zn
2+
concentration and the current density on the preferred orientation of the ZnO film were studied. X-ray diffraction results showed that as Zn
2+
concentration and the current density increases
the preferred orientation of ZnO film changes from (002) to (101) gradually. When Zn
2+
concentration is 0.005 mol·L
-1
and the current density is 2.0 mA·cm
-2
or Zn
2+
concentration is 0.05 mol·L
-1
and the current density is 0.5 mA·cm
-2
the prepared ZnO films are (002) preferred orientation. When Zn
2+
concentration is 0.05 mol·L
-1
and the current density is 2.0 mA·cm
-2
the prepared ZnO film is (101) preferred orientation. The phenomenon can be explained based on the two-dimensional nuclei theory. When Zn
2+
concentration or the current density is low
the supersaturation of ZnO around substrate is also low and the nucleation activation energy of two-dimensional (002) nuclei is lower than that of (101) nuclei
therefore ZnO film is (002) preferred orientation. When Zn
2+
concentration and the current density is high
the supersaturation of ZnO is also high and the nucleation activation energy of (002) nuclei is higher than that of (101) nuclei
therefore ZnO film is (101) preferred orientation. The results suggested that orientation-controllable growth of the cathodically electrodeposited ZnO films can be achieved by adjusting Zn
2+
concentration and the current density.
. zgür V, Alivov Ya I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98 (4):041301-1-103.
. Li Aixia, Bi Hong, Liu Yanmei, et al. Structure and optical properties of (Co,Cu)-codoped ZnO thin films [J]. Chin. J. Lumin. (发光学报), 2008, 29 (2):289-293 (in Chinese).
. Liu Xuedong, Gu Shulin, Li Feng, et al. The effect of carrier gas H2 used during MOCVD-grown on the properties of N-doped ZnO [J]. Chin. J. Lumin. (发光学报), 2008, 29 (3):441-446 (in Chinese).
. Gal D, Hodes G, Lincot D, et al. Electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells [J]. Thin Solid Films, 2000, 361-362 :79-83.
. Jiang Zhiyuan, Xu Tao, Xie Zhaoxiong, et al. Molten salt route toward the growth of ZnO nanowires in unusual growth directions [J]. J. Phys. Chem. B, 2005, 109 (49):23269-23273.
. Guo W, Allenic A, Chen Y B, et al. ZnO epitaxy on (111) Si using epitaxial Lu2O3 buffer layers [J]. Appl. Phys. Lett., 2008, 92 (7):072101-1-3.
. Sun Jian, Bai Yizhen, Gu Jianfeng, et al. The growth and optical properties of ZnO films deposited on freestanding thick diamond films [J]. Chin. J. Lumin.(发光学报), 2008, 29 (3):455-459 (in Chinese).
. Petersen J, Brimont C, Gallart M, et al. Structural and photoluminescence properties of ZnO thin films prepared by sol-gel process [J]. J. Appl. Phys., 2008, 104 (11):113539-1-5.
. Zhu M W, Gong J, Sun C, et al. Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films [J]. J. Appl. Phys., 2008, 104 (7):073113-1-7.
. Ma Yukun, Yao Ning, Gao Zhifeng, et al. The preparation of ZnO film by two step chemical deposition method and its field emission properties [J]. Chin. J. Lumin. (发光学报), 2009, 30 (3):368-372 (in Chinese).
. Kashiwaba Y, Abe T, Onodera S, et al. Comparison of non-polar ZnO (112 0) films deposited on single crystal ZnO (112 0) and sapphire (011 2) substrates [J]. J. Crystal Growth, 2007, 298 :477-480.
. Ho Y T, Wang W L, Peng C Y, et al. Growth of nonpolar (112 0) ZnO films on LaAlO3(001) substrates [J]. Appl. Phys. Lett., 2008, 93 (12):121911-1-2.
. Han S K, Kim J G, Kim J H, et al. Effects of two-step growth by employing Zn-rich and O-rich growth conditions on pro-perties of (112 0) ZnO films grown by plasma-assisted molecular beam epitaxy on sapphire [J]. J. Vac. Sci. Technol. B, 2009, 27 (3):1635-1640.
. Tian Ke, Shi Yuanyuan, Xu Xiaoqiu, et al. The investigation of growth orientations of ZnO films by CVD [J]. Chin. J. Lumin. (发光学报), 2008, 29 (2):294-298 (in Chinese).
. Zhou Shaomin. Metal Electrodeposition-principles and Research Methods [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1987, 261-266 (in Chinese).
0
浏览量
228
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构