浏览全部资源
扫码关注微信
1. 中国科学院 激发态物理重点实验室 长春光学机密机械与物理研究所, 吉林 长春 130033
2. 中国科学院 研究生院, 北京 100049
收稿日期:2009-10-25,
修回日期:1900-01-02,
网络出版日期:2010-02-20,
纸质出版日期:2010-02-20
移动端阅览
任清江, 李文连, 初 蓓, 等. 有机光伏器件的激子阻挡层的工作机制[J]. 发光学报, 2010,31(1):141-144.
REN Qing-jiang, LI Wen-lian, CHU Bei, et al. Operation Mechanism of Exciton Blocking Layer in Organic Photovoltaic Cell[J]. Chinese journal of luminescence, 2010, 31(1): 141-144.
研究了有机光伏器件的激子阻挡层(EBL)的工作机制
对于像bathocuproine (BCP)和bathophenanthroline (Bphen)这样的电子阻挡层
主要利用的是他们的强的电子传输能力。而像copper phthalocyanine (CuPc) 作为电子阻挡层则可利用它大的空穴传输能力和较低的HOMO能级。 我们还发现当CuPc厚度为10~30 nm 时
CuPc表现出比BCP 和Bphen高的EB特性。文中还较为详细地叙述了CuPc作为电子阻挡层的运行机制。
The operation mechanism of exciton blocking layer (EBL) in organic photovoltaic (PV) cells was demonstrated
the EBL materials with higher electron-transporting ability were used such as bathocuproine (BCP)
bathophenanthroline (Bphen)
and so on. However
it was interestingly found that copper phthalocyanine (CuPc) widely used as donor of the PV cells also can be used as EBL materials and under thicknesses of larger than 10 nm the EBL property even is higher than that of traditional EBL consisting of BCP and Bphen
due to its stronger hole transporting ability from the cathode to the CuPc layer.
. Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett., 1986, 48 (2):183-185.
. Xue Jiangeng, Soichi Uchida, Rand Barry P. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions [J]. Appl. Phys. Lett., 2004, 85 (23):5757-5759.
. Kushto Gary P, Kim Woohong, et al. Flexible organic photovoltaic using conducting polymer electrodes [J]. Appl. Phys. Lett., 2005, 86 (9):093502-1-3.
. Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer [J]. Adv. Mater., 2006, 18 (5):572-576.
. Halls J J M, Pichler K, Friend R H. Exciton diffusion and dissociation in a poly (p-phenylenevinylene)/C60 heterojunction photovoltaic cell [J]. Appl. Phys. Lett., 1996, 68 (22):3120-3122.
. Pettersson L A A, Roman L S, et al. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films [J]. J. Appl. Phys., 1999, 86 (1):487-496.
. Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317 (5835):222-225.
. Peumans P, Forrest S R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells [J]. Appl. Phys. Lett., 2001, 79 (1):126-128.
. Hong Z R, Huang Z H, Zeng X T. Utilization of copper phthalocyanine and bathocuproine as an electron transport layer in photovoltaic cells with copper phthalocyanine/buckminsterfullerene heterojunctions: Thickness effects on photovoltaic performances [J]. Thin Solid Films, 2007, 515 (5):3019-3023.
. Huang Qixiong, Yuan Yongbo, Lian Jiarong, et al. The effects of CuPc thin film deposition rate on organic photovoltaic device performance [J]. Chin. J. Lumin. (发光学报), 2008, 29 (3):433-436 (in Chinese).
. Rand B P, Li J, Xue J, et al. Organic double-heterostructure photovoltaic cells employing thick tris(acetylacetonato)ruthenium(Ⅲ) exciton-blocking layers [J]. Adv. Mater., 2005, 17 (22):2714-2718.
. Hong Z R, Huang Z H, Zeng X T. Investigation into effects of electron transporting materials on organic solar cells with copper phthalocyanine/C60 heterojunctions [J]. Chem. Phys. Lett., 2006, 425 (1-3):62-65.
. Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells [J]. J. Appl. Phys., 2003, 93 (7):3693-3723.
0
浏览量
183
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构