浏览全部资源
扫码关注微信
贵州大学 物理系,贵州 贵阳,550025
收稿日期:2009-01-19,
修回日期:1900-01-02,
网络出版日期:2009-10-30,
纸质出版日期:2009-10-30
移动端阅览
肖星星, 陈跃刚. 金属层亚波长狭缝中光波耦合[J]. 发光学报, 2009,30(5):682-686.
XIAO Xing-xing, CHEN Yue-gang. Investigation of Optical Wave Coupling between Two Subwavelengh Slits in Metallic Sheet[J]. Chinese journal of luminescence, 2009, 30(5): 682-686.
亚波长波导能够控制光在亚波长的尺寸中以很小损耗传输
在集成光学中有广泛的应用。利用二维时域有限差分(FDTD)法
研究了光波在金属层中亚波长两狭缝之间的耦合过程。分别在较厚的金属层前表面和后表面刻上两个狭缝
纵向错开一定距离(间距)
横向重叠一定长度(耦合长度)
两个狭缝能够将光波从金属层的前表面耦合到后表面。改变两个狭缝长度、间距和耦合长度等参数
耦合波长和效率发生明显变化。结合振幅分布
认为光波在两狭缝形成波导共振
前表面狭缝的共振将入射波能量耦合进入狭缝中
后表面狭缝的共振将能量耦合出去
两个狭缝之间通过隧穿效应耦合。
Transmission losses are very little for optial wave in subwavelengh structure
which have wide applications in integration optics. By using two-dimensional finite difference of time domain
the coupling between two subwavelengh slits is investigated. Two slits are located on the front surface and back surface of a metal layer
displacing a certainty distance in longitudinal direction and overlap a certainty length (coupling length) in transverse direction. Optical wave transmit the metallic layer through the coupling between two slits. Varying the parameters
such as the slits length
separation distance and coupling length and so on
coupling wavelength and efficiency will change. Combining with the amplitude distributions
the optical wave forms a waveguide resonance between two slits
the resonance at the front surface couples the incident energy into the slit
but the resonance at the back surface will couple the energy away from the metal layer. The energy coupling between the two slits is achieved by a tunneling effect coupling.
. Atwater H A. The promise of plasmonics [J]. Scientific American, 2007, 296 (4):56-63.
. Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures [J]. Phys. Rev. B, 2000, 61 (15):10484-10503.
. Wang Bing, Wang Guoping. Planar metal heterostructures for nanoplasmonic waveguides [J]. Appl. Phys. Lett., 2007, 90 (1):013114-1-3.
. Dionne J A, Sweatlock L A, Atwater H A. Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron mode l [J]. Phys. Rev. B, 2005, 72 (7):075405-1-3.
. Hosseini A, Massoud Y. Nanoscale surface plasmon based resonator using rectangular geometry [J]. Appl. Phys. Lett., 2007, 90 (18):181102-1-3.
. Hibbins A P, Samples J P, Lawrence C R. Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate [J]. Appl. Phys. Lett., 2002, 81 (24):4661-4663.
. Sun M, Tian J, Li Z Y, et al. The role of periodicity in enhanced transmission through subwavelength hole arrays [J]. Chin. Phys. Lett., 2006, 23 (2):486-488.
. Ge Debiao, Yan Yubo. The Finite-different Time-domain Method [M]. Xian: Xidian University Press, 2002, 1-64.
. Yee K S. Numerical solution of initial boundary value problems involving maxwells equations in isotropic media [J]. IEEE Trans. Antennas Propag, 1966, AP-14:302-307.
. Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. J. Comput. Phys., 1994, 114 (2):185-200.
. Müller R, Malyarchuk V, Lienau C. A three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes [J]. Phys. Rev. B, 2003, 68 (20):205415-1-9.
. Baida F B, Van Labeke D. Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays [J]. Phys. Rev. B, 2003, 67 (15):155314-1-7.
. Cummer St A. An analysis of new and existing fdtd methods for isotropic cold plasma and a method for improving their accuracy [J]. IEEE Trans. Antennas Propag, 1997, 45 (3):392-400.
. Lezec H, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays [J]. Opt. Express, 2004, 12 (16):3629-3651.
. Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: The role of the localized waveguide resonances [J]. Phys. Rev. Lett., 2006, 96 (23):233901-1-3.
. Garc a-Vidal F J, Mart n-Moreno L, Moreno E, et al. Transmission of light through a single rectangular hole in a real metal [J]. Phys. Rev. B, 2006, 74 (15):153411-1-3.
. Hecht E. Physics: Calculus (Second Edition) [M]. Beijing: Tsinghua University Press, 2005, 475-485.
0
浏览量
517
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构