浏览全部资源
扫码关注微信
1. 曲阜师范大学 物理工程学院, 山东 曲阜,273165
2. 曲阜师范大学 图书馆, 山东 曲阜,273165
3. 兖州一中, 山东 兖州,272100
收稿日期:2008-11-10,
修回日期:1900-01-02,
网络出版日期:2009-08-30,
纸质出版日期:2009-08-30
移动端阅览
齐延华, 侯芹英, 苏希玉, 等. 不同3d过渡金属掺杂对ZnS电子结构和光学性质的影响[J]. 发光学报, 2009,30(4):515-519.
QI Yan-hua, HOU Qin-ying, SU Xi-yu, et al. Electronic Structure and Optical Properties of ZnS System Doped with Different 3d Transition Metals[J]. Chinese journal of luminescence, 2009, 30(4): 515-519.
采用基于密度泛函理论的第一性原理方法对掺杂不同3d过渡金属元素的闪锌矿型ZnS系统进行了研究。结果表明
掺杂元素的主要贡献在费米面附近
掺杂后系统的价带底、导带均向低能方向移动
带隙变小。Fe、Mn、Cr、V的掺杂为n型掺杂
Cu、Ni、Co的掺杂为p型掺杂。掺杂后系统的光学吸收边都有明显的红移
在绿光区有较强的吸收。此外
V和Cr掺杂系统在远紫外区也有较强的吸收
结果与实验符合。
The electronic and optical properties of blende phase ZnS systems doped with 3d transition metal ions were studied by the first-principles method based on density functional theory. The density of state
band structure
and absorption coefficient were calculated. The obtained results indicated that the bottom of the valence band and the conduction band of all the doped systems shift to the low-energy area compared with that of pure ZnS
and the band gap reduces. The dopings of Fe
Mn
Cr
and V are the n-type dopings
and the doping of Cu
Ni
Co are the p-type doping. Absorption edges of all the doped systems shift obviously to the infrared region; there is strong absorption in the green light distinct for all the systems. Furthermore
there is strong absorption in the far ultraviolet region for V and Cr doped systems. Our results are in agreement with experiments.
. Bevilacqua G, Martinell L, Vogel E E. Jahn-Teller effect in the emission and absorption spectra of ZnS : Cr2+ and ZnSe : Cr2+ [J]. Phys. Rev. B, 2004, 70 (7):075206-1-7.
. Hu H, Zhang W H. Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles [J]. Optical Materials, 2006, 28 (5):536-550.
. Xu S J, Chua S J, Liu B, et al. Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment [J]. Appl. Phys. Lett., 1998, 73 (4):478-480.
. Li G B, Wang L W. First principles calculations of ZnS : Te energy levels [J]. Phys. Rev. B, 2003, 67 (20):205319-1-11.
. Sato K, Katayama-Yoshida H. First principles materials design for semiconductor spintronics [J]. Semicond. Sci. Tech-nol., 2002, 17 (4):367-376.
. He Kaihua, Yu Fei, Ji Guangfu, et al. Study of optical properties and electronic structure of V in ZnS by first principles [J]. Chin. J. High Pressure Phys.(高压物理学报), 2006, 20 (1):56-60 (in Chinese).
. Lei Yu, Hu Xiaoqiang, Liu Jidong. Influence of the structural, electronic and optical properties on ZnS doped Co [J]. J. Nanchang University (Natural Science) (南昌大学学报,理科版), 2007, 31 (6):564-565 (in Chinese).
. Shen Hanxin, Shen Yaowen. Study on electronic structure of ZnS : Mn2+ [J]. Chin. J. High Pressure Phys.(高压物理学报), 2003, 17 (1):65-68 (in Chinese).
. Tablero C. Electronic and magnetic properties of ZnS doped with Cr [J]. Phys. Rev. B, 2006, 74 (19):195203-1-9.
. Stampfl C, Van de Walle C G. Density-functional calculations for Ⅲ-Ⅴ nitrides using the local-density approximation and the generalized gradient approximation [J]. Phys. Rev. B, 1999, 59 (8):5521-5535.
. Perdew J P, Mel L. Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities [J]. Phys. Rev. Lett., 1983, 51 (20):1884-1887.
. Bhargava R N, Gallagher D, Hong X, et al. Optical properties of manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett., 1994, 72 (3):416-419.
. Biernacki S W, Roussos G, Schulz H J. The luminescence of V2+ (d3) and V3+ (d2) ions in ZnS and an advanced interpretation of their excitation levels [J]. J. Phys. C: Solid State Phys., 1988, 21 (33):5615-5630.
. Pohl U W, Gumlich H E. Optical transitions of different Mn-ion pairs in ZnS [J]. Phys. Rev. B, 1989, 40 (2):1194-1201.
. Langer D, Ibuki S. Zero-phonon line and phonon coupling in ZnS ∶ Mn [J]. Phys. Rev., 1964, 138 (3A):A809-A815.
. Lee S, Song D, Kim D, Lee J, et al. Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS : Cu nanocrystals [J]. Mater. Lett., 2004, 58 (3-4):342-346.
0
浏览量
137
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构