浏览全部资源
扫码关注微信
长江大学 物理科学与技术学院,湖北 荆州,434023
收稿日期:2009-05-25,
修回日期:1900-01-02,
网络出版日期:2009-10-30,
纸质出版日期:2009-10-30
移动端阅览
吴耀德, 李继军, 陈海燕. 平行光子晶体波导的传输特性及应用[J]. 发光学报, 2009,30(5):673-677.
WU Yao-de, LI Ji-jun, CHEN Hai-yan. Propagating Characteristics and Applications of Parallel Photonic Crystal Waveguides[J]. Chinese journal of luminescence, 2009, 30(5): 673-677.
采用时域有限差分法研究两平行光子晶体波导的传输特性及模场分布
利用耦合模理论计算光子晶体波导的耦合系数。计算结果表明
在不同的频率范围内两平行光子晶体波导之间表现出不同的耦合特性:在高频段(0.32~0.44)(
ωa
/2π
c
)的范围内两直波导表现出相互的能量交换
实现光耦合
耦合系数随入射波 频率增加而减小;而在低频段(0.29~0.32)(
ωa
/2π
c
)的范围内
两波导的传输谱图几乎重合。最后
提出一种采用固定波导耦合长度同时实现光分束及光均分器的方案
当耦合长度取34
a
时
可将频率为0.333 (
ωa
/2π
c
)和 0.357(
ωa
/2π
c
)的两入射波分束传播
同时将低频段中的任意频率波进行能量均分。
The propagating characteristics and mode profiles of two parallel photonic crystal waveguides were studied by using finite-difference time-domain method (FDTD)
and the coupling coefficient between the two parallel photonic crystal waveguides was obtained with coupled-mode theory. Numerical results demonstrated that the coupling characteristic between the two parallel photonic crystal waveguides reveals large discrimination within different frequency region. For a high frequency range of (0.32~0.44)(
ωa
/2π
c
)
they exchange energy each other and optical coupling is realized
the coupling coefficient decreases with the increase of input frequency; while at a low frequency range of (0.29~0.32)(
ωa
/2π
c
)
the mode profiles of the two waveguides are overlapped. Finally
A solution realizing optical beam splitter and optical power equalizer is proposed using a certain coupling length of 34
a
the two incident waves with high frequencies of 0.333(
ωa
/2π
c
) and 0.357(
ωa
/2π
c
)can be split
meanwhile the wave power with arbitrary frequency at low frequency can be equalized within the two waveguides.
. Chen Song, Wang Weibiao, Liang Jingqiu, et al. Two-dimensional square photonic crystal microcavities [J]. Chin. J. Lumin.(发光学报), 2007, 28 (1):7-11 (in Chinese).
. Park H G, Hwang J K, Huh J, et al. Characteristics of modified single-defect two-dimensional photonic crystal lasers [J]. IEEE J. Quantum Electronics, 2002, 38 (10):1353-1365.
. Mekis A, Chen J C, Kurland I, et al. High transmission through sharp bends in photonic crystal waveguides [J]. Phys. Rev. Lett., 1996, 77 (18):3787-3790.
. Tang Tiantong, Wang Zhaohong. Integration Optics [M]. Beijing: Science Publishing Company, 2005, 22-31.
. Xu Xuming, Li Wei, Miao Luping, et al. The properties of a 1×4 optional power splitter made of photonic crystal waveguide[J]. Chin. J. Lumin.(发光学报), 2009, 30 (1):31-34 (in Chinese).
. Yu Tianbao, Wang Minghua, Jiang Xiaoqing, et al. Coupling characteristics of electromagnetic waves in parallel three photonic crystal waveguides and its application [J]. Acta Phys. Sin.(物理学报), 2006, 55 (4):1851-1856 (in Chinese).
. Zhu Zhihong, Ye Weimin, Yuan Xiaodong, et al. Photonic crystal waveguide directional coupler [J]. Acta Optica Sinica(光学学报), 2003, 23 (10):1237-1240 (in Chinese).
. Zhu Guixin, Yu Tianbao, Chen Shuwen, et al. A new way of uniform splitting of the optical power by directional coupling between the photonic crystal waveguides [J]. Acta Phys. Sin.(物理学报), 2009, 58 (2):1014-1019 (in Chinese).
. Xu Xuming, Yue Yonglu, Fang Liguang, et al. Design and optimization of photonic crystal waveguide directional coupling optical power splitter [J]. Study on Optical Communications (光通信研究), 2008, (5) :14-17 (in Chinese).
. Yu Tianbao, Jiang Xiaoqing, Yang Jianyi, et al. Self-imaging effect of TM mode in photonic crystal multimode waveguides only exhibiting band gaps for TE modes [J]. Phys. Lett. A, 2007, 369 (12):167-171.
0
浏览量
107
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构