浏览全部资源
扫码关注微信
1. 内蒙古大学 物理科学与技术学院,内蒙古 呼和浩特,010021
2. 内蒙古师范大学 物理与电子信息学院,内蒙古 呼和浩特,010022
3. 内蒙古农业大学 理学院,内蒙古 呼和浩特,010018
收稿日期:2008-11-13,
修回日期:1900-01-02,
网络出版日期:2009-08-30,
纸质出版日期:2009-08-30
移动端阅览
张 敏, 闫祖威. 压力下GaN/Ga1-xAlxN量子点中杂质态的界面效应[J]. 发光学报, 2009,30(4):529-534.
ZHANG Min, YAN Zu-wei. Interface Effect on the Impurity State in a GaN/Ga1-xAlxN Quantum Dot under Pressure[J]. Chinese journal of luminescence, 2009, 30(4): 529-534.
考虑界面处导带弯曲
流体静压力以及有效质量随量子点位置的依赖性
采用变分法以及简化相干势近似
研究了无限高势垒GaN/Ga
1-x
Al
x
N球形量子点中杂质态的界面效应
计算了杂质态结合能随量子点尺寸、电子面密度以及压力的变化关系。结果表明
结合能随压力的增大呈线性增加的趋势
有效质量位置的依赖性以及导带弯曲对结合能有不容忽视的影响。
Semiconductor structures with quantum confinement have shown interesting behavior. In recent years
the physical properties of quantum heterostructures composed of the group-III nitrides semiconductors with wide-band-gaps
such as AlN
GaN and InN
as well as their ternary compounds
have been widely stu-died arising from their promising application in short-wavelength electroluminescence devices.The high pressure
high electric-field
intense magnetic-field become the powerful tools to explore the property of material. Some authors investigated the effects of electric field and hydrostatic pressure on donor binding energies in a GaAs quantum dot. Some authors calculated the ground-state binding energies for a hydrogenic impurity in a spherical quantum dot within a uniform magnetic field. How ever
However
few studies focused interface effect and hydrostatic pressure on zinc-blende nitride quantum dots. As the periodicity of the host semiconductor is lost
or when the impurity potential varies too rapidly over an effective Bohr radius the effective mass approximation is not reliable.In the present work
a modified variational method within the simplified coherent potential approximate was adopted to investigate the impurity state binding energies of GaN/Ga
1-x
Al
<
/em
>
xN infinite barrier spherical shape quantum dot by using a triangular potential to approximate the interface potential. Considering the hydrostatic pressure and a position dependent mass
the relations among the impurity binding energies
the hydrostatic pressure
quantum dot radius and the electron areal density were calculated. The result indicated that the binding energies of impurity state nearly linearly increase with pressure. It also showed that the influence of conductive band bending and the position dependent effective mass should not be neglected. As the quantum dot radius is smaller
the binding energies are not affected by conductive band bending. With the increasing of the quantum dot size
the binding energies increase gradually with it. For a given hydrostatic pressure and Al component
the electron areal density n
s
strengthens the band bending of the interface to increase the binding energy.
. Oyoko H O, Duque C A, Porras-Montenegro N. Uniaxial stress dependence of the binding energy of shallow donor impurities in GaAs(Ga,Al)As quantum dots [J]. J. Appl. Phys., 2001, 90 (2):819-823.
. Rosas R, Marin J L, Riera R. Hydrogenic impurities in spherical quantum dots in a magnetic field [J]. J. Appl. Phys., 2001, 90 (5):2333-2337.
. Zhang M, Ban S L. Impurity states in semiconductor GaAs/AlxGa1-xAs heterojunction with an external magnetic field [J]. Chin. J. Lumin. (发光学报), 2004, 25 (4):369-374 (in Chinese).
. Oshiro K, Akai K, Matsuura M. Exciton-optical phonon interaction in a spherical quantum dot embedded in nonpolar matrix [J]. Phys. Rev. B, 2002, 66 (15):153308-1-4.
. Kohn W. Shallow impurity states in silicon and germanium [J]. Solid State Phys., 1957, 5 :257-320.
. Qi X H, Kong X J, Liu J J. Effect of aspatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well [J]. Phys. Rev. B, 1998, 58 (16):10578-10582.
. Rajashabala S, Navaneethakrishnan K. Effective masses for donor binding energies in quantum well systems [J]. Mod. Phys. Lett. B, 2006, 20 (24):1529-1541.
. Sing J. Quantum Mechanics [M]. A.Wiley-Inter Science Publication: John Wiley & Sons INC, 1997.
. Perlin P, Mattos L, Shapiro N A, et al. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate [J]. J. Appl. Phys., 1999, 85 (4):2385-2389.
. Vinet P, Ferrante J, Smith J R, et al. A universal equation of state for solids [J]. J. Phys. C, 1986, 19 (20):L467-L473.
. Christensen N E, Gorczyca I. Optical and structural properties of Ⅲ-V nitrides under pressure [J]. Phys. Rev. B, 1994, 50 (7):4397-4415.
. Goi A R, Syassen K, Cardona M. Effect of pressure on the refractive index of Ge and GaAs [J]. Phys. Rev. B, 1990, 41 (14):10104-10110.
. Wagner J M, Bechstedt F. Pressure dependence of the dielectric and lattice-dynamical properties of GaN and AlN [J]. Phys. Rev. B, 2000, 62 (7):4526-4534.
. Ban S L, Hasbun J E. Interface polarons in a realistic heterojunction potential [J]. Eur. Phys. J. B, 1999, 8 (3):453-461.
. Christensen N E, Gorczyca I. Optical and structural properties of Ⅰ -Ⅲ nitrides under pressure [J]. Phys. Rev. B, 1994, 50 (7):4397-4415.
. Fan W J, Li M F, Chong T C. Electronic properties of zinc-blende GaN,AlN and their alloys Ga1-xAlxN [J]. J. Appl. Phys., 1996, 79 (1):188-194.
. Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys [J]. J. Appl. Phys., 2001, 89 (11):5815-5874.
. Karch K, Bechstedt F, Pletl T. Lattice dynamics of GaN: Effects of 3d electrons [J]. Phys. Rev. B, 1997, 56 (7):3560-3563.
. Karch K, Bechstedt F. Ab initio lattice dynamics of BN and AlN: Covalent versus ionic forces [J]. Phys. Rev. B, 1997, 56 (12):7404-7415.
0
浏览量
134
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构