浏览全部资源
扫码关注微信
1. 中国科学院 福建物质结构研究所, 福建 福州 350002
2. 江西理工大学, 江西 赣州 341000
收稿日期:2008-07-29,
修回日期:1900-01-02,
网络出版日期:2009-06-30,
纸质出版日期:2009-06-30
移动端阅览
游维雄, 黄艺东, 林炎富, 等. YAB晶体中Yb3+到Er3+的能量传递[J]. 发光学报, 2009,30(3):321-326.
YOU Wei-xiong, HUANG Yi-dong, LIN Yan-fu, et al. The Energy Transfer from Yb3+ to Er3+ in YAl3(BO3)4 Crystal[J]. Chinese journal of luminescence, 2009, 30(3): 321-326.
1.55 μm波段是光通讯的一个重要波段
而且对人眼安全
有高的大气透过率
因此可以广泛应用于通讯和遥感测距等领域。由于Er
3+
离子对商品化的InGaAs激光二极管的抽运波长不能有效吸收
因此一般通过在基质中共掺杂Yb
3+
和Er
3+
离子来获得1.55 μm波段激光输出。采用助熔剂法生长了不同Yb
3+
和Er
3+
掺杂浓度的YAl
3
(BO
3
)
4
(YAB)晶体。运用速率方程模型研究了晶体中Yb
3+
到Er
3+
能量传递过程
得到了根据Yb
3+
离子的荧光寿命计算能量传递系数的简单计算公式。计算了不同掺杂离子浓度的YAB晶体中的能量传递系数等相关参数。结果表明
在YAB晶体中
Yb
3+
到Er
3+
能量传递非常有效
YAB晶体可以作为一种能获得1.55 μm激光输出的良好介质材料。
The laser emission around wavelength at 1.55 μm is located in the "eye-safe" region and plays an important role in the optical communication and remote sensing. However
Er
3+
-doped materials cannot be efficiently pumped by the InGaAs laser diodes because of the lower absorption of Er
3+
at the wavelength of 976 nm. Generally
the solution is to add Yb
3+
ion as a sensitizer to improve the pumping efficiency. So
in the Yb
3+
and Er
3+
co-doped materials
the pumping energy can be efficiently absorbed by Yb
3+
and transferred to Er
3+
. In this paper
YAl
3
(BO
3
)
4
crystals with different Yb
3+
and Er
3+
doping concentrations were grown by the flux method. The Yb
3+
to Er
3+
energy transfer in YAB crystals was investigated with the rate equation without considering the back energy transfer and up-conversion processes. The simple formulation for calcula-ting the energy transfer coefficients was derived according to the fluorescence lifetimes of Yb
3+
ion. The energy transfer parameters were also calculated. The results showed that the energy transfer is very efficient in the YAB crystal and the energy transfer probabilities from Yb
3+
to Er
3+
increases with the increasing of Yb
3+
concentrations. The energy transfer coefficients calculated by using experimental data are accordant with those calculated by theory
it means that the formulation is suitable for calculating the energy transfer coefficient in the high phonon energy materials. The energy transfer coefficients and critical interaction distance are comparable with or higher than those in other materials
which means that the energy transfer from Yb
3+
to Er
3+
in YAB crystal can be more efficient. So
this host could be a good candidate for the 1.55 μm laser media.
. Hecht J. Laser action in fibers promises a revolution in communications [J]. Laser Focus World, 1993, 29 (2):75-81.
. Lenoyuk N I, Leonyuk L I. Growth and characterization of RM3(BO3)4 crystals [J]. Prog. Crystal Growth and Charact., 1995, 31 (3-4):179-278.
. Mills A D. Crystallographic data for new rare earth borate compounds, RX3(BO3)4 [J]. Inorg. Chem., 1962, 1 (4):960-961.
. Filimonov A A, Leonyuk N I, Meissenr L B, et al. Nonlinear optical properties of an isomorphic family of crystals with a ytterbium-aluminum borate (YAB) structure [J]. Krist. Tech., 1974, 9 (1):63-66.
. Zhang K, Wang X. Nonlinear Optical Crystal Material Science [M]. First edition, Beijing: Science Press, 1996 (in Chinese).
. Jaque D, Ramirez M O, Bausa L E, et al. Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal [J]. Phys. Rev. B, 2003, 68 (3):035118-1-9.
. Wang P, Dawes J M, Dekker P, et al. Growth and evaluation of ytterbium-doped ytterium aluminum borate as a potential self-doubling laser crystal [J]. J. Opt. Soc. Am. B, 1999, 16 (1):63-69.
. Foldvari I, Beregi E, Munoz F A, et al. The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals [J]. Opt. Mater., 2002, 19 (2):241-244.
. Li J, Wang J, Tan H, et al. Growth and optical properties of Er,Yb ∶ YAl3(BO3)4 crystal [J]. Mater. Res. Bull., 2004, 39 (9):1329-1334.
. Cantelar E, Munoz J A, Sanz-Garcia J A, et al. Yb3+ to Er3+ energy transfer in LiNbO3 [J]. J. Phys.: Condens. Matter, 1998, 10 (39):8893-8903.
. Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurement in solid-state laser media [J]. Opt. Lett., 1994, 19 (17):1343-1345.
. Holstein T. Imprisonment of resonance radiation in gases [J]. Phys. Rev., 1947, 72 (12):1212-1233.
. Holstein T. Imprisonment of resonance radiation in gases Ⅱ[J]. Phys. Rev., 1951, 83 (6):1159-1168.
. Walsh P J. Imprisonment of resonance radiation in a gaseous discharge [J]. Phys. Rev., 1957, 107 (2):338-344.
. Phelps A V. Role of molecular ions, metastable molecules, and resonance radiation in the breakdown of rare gases [J]. Phys. Rev., 1960, 117 (3):619-632.
. Takebe H, Murata T, Morinage K. Compositional dependence of absorption and fluorescence of Yb3+ in oxide glasses [J]. J. Am. Ceram. Soc., 1996, 79 (3):681-687.
. Zou X, Toratani H. Evaluation of spectroscopic properties of Yb3+-doped glasses [J]. Phys. Rev. B, 1995, 52 (22):15889-15897.
. Chen Y, Huang Y, Luo Z. Spectroscopic properties of Yb3+ in bismuth borate glasses [J]. Chem. Phys. Lett., 2003, 382 (3-4):481-488.
. Pujol M C, Bursukova M A, Guell F, et al. Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO4)2 [J]. Phys. Rev. B, 2002, 65 (16):165121-1-11.
. Liao J, Lin Y, Chen Y, et al. Radiative-trapping and fluorescence-concentration quenching effects of Yb : YAl3(BO3)4 crystals [J]. J. Opt. Soc. Am. B, 2006, 23 (12):2572-2580.
. Da Vila L D, Gomes L, Tarelho L V G. Mechanism of the Yb-Er energy transfer in fluorozirconate glass [J]. J. Appl. Phys., 2003, 93 (7):3873-3880.
. Burns P A, Dawes J M, Dekker P. Optimization of Er,Yb : YCOB for CW laser operation [J]. IEEE J. Quantum Electron., 2004, 40 (11):1575-1582.
. Lacovara P. Energy transfer and upconversion in Yb : YAG and Yb,Er : YAG . Ph.D. Dissertation, Boston College, 1992.
0
浏览量
183
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构