浏览全部资源
扫码关注微信
大连理工大学化学系精细化工国家重点实验室,辽宁 大连,116012
收稿日期:2008-11-25,
修回日期:1900-01-02,
网络出版日期:2009-06-30,
纸质出版日期:2009-06-30
移动端阅览
吴红梅;何 成;王 健;周 硼. 基于水解活性的Zn<sup>2+</sup>荧光探针[J]. 发光学报, 2009,30(3): 275-284
WU Hong-mei, HE Cheng, WANG Jian, ZHOU Peng. Hydrolysis-activated Fluorophore System as a Molecular Sensor for Selective Detection of Zn<sup>2+</sup>[J]. Chinese Journal of Luminescence, 2009,30(3): 275-284
合成了一种新颖的锌离子荧光探针N(2-羟基苄基)-4-(2-羟基苯亚甲基胺)-苯甲酰肼(HHB)
该探针本身的荧光较弱
但当它与Zn
2+
配位时荧光增强
在475 nm处产生一较宽的发射光谱
量子产率
f
=0.59 (
ex
=370 nm)。该化合物对Zn
2+
具有良好的选择性能
环境生物体系中大量存在的碱金属和碱土金属离子K
+
Na
+
Mg
2+
和Ca
2+
以及过渡金属离子Mn
2+
Co
2+
Ni
2+
和 Cu
2+
等对Zn
2+
的检测没有明显影响。在生命体系的pH值范围(6.8~7.7)
配合物HHB显示出对Zn
2+
检测较高的灵敏度。作为比较文中还研究了HHB水解的主要产物4-氨基苄腙-水杨醛(HB)对Zn
2+
的识别与传感性能。
A new selective Zn
2+
fluorescent sensor
N'-(2-hydroxybenzylidene)-4-(2-hydroxy-benzylidene-amino) benzohydrazide (HHB)
was synthesized. With the harbored 2-hydroxybenzylidene group
HHB exhibits an emission band centered at 475 nm with high quantum yield (
f
= 0.59) upon the addition of zinc ions. It features excellent fluorescence enhancement and provides favorable sensitivity for Zn
2+
detection under the biological pH window of 6.8~7.7
and high selectivity for Zn
2+
over biologically relevant alkali metals
alkaline earth metals and some of the first row transition metal. It works through the metal-assisted hydrolysis mechanism
and the hydrolysis residue sensor HB
salicylaldehyde-4-aminobenzoylhydrazone
was also investigated for comparison.
. Jiang P, Guo Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors [J]. Coord. Chem. Rev., 2004, 248 (1-2):205-229.[2]. Chang C J, Lippard S J. Neurodegenerative Diseases and Metal Ions [M]. Edited by Sigel A, Sigel H, Sigel RKO, Chichester, UK:Wiley, 2006, 1:321-70.[3]. Carol P, Sreejith S, Ajayaghosh A. Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions [J]. Chem. Asian J., 2007, 2 (3):338-348.[4]. Mikata Y, Wakamatsu M, Yano S. Tetrakis(2-quinolinylmethyl)ethylenediamine (TQEN) as a new fluorescent sensor for zinc [J]. Dalton Trans., 2005, 5 (3):545-550.[5]. Meng X M, Zhu M Z, Liu L, et al. Novel highly selective fluorescent chemosensors for Zn(Ⅱ) [J]. Tetrahedron Lett., 2006, 47 (10):1559-1562.[6]. Xie N, Chen Y. Design and synthesis of a selective chemosensor for Zn2+ [J]. Chin. J. Chem., 2006, 24 (12):1800-1803.[7]. Salman H, Tal S, Chuvilov Y, et al. Sensitive and selective PET-based diimidazole luminophore for ZnⅡ ions:A structure activity correlation [J]. Inorg. Chem., 2006, 45 (14):5315-5320.[8]. Aoki S, Sakurama K, Matsuo N, et al. A new fluorescent probe for zinc(Ⅱ):An 8-hydroxy-5-N,N-dimethylaminosulfonyl quinoline-pendant 1,4,7,10-tetraazacyclododecane [J]. Chem. Eur. J., 2006, 12 :9066-9080.[9]. Peng X J, Xu Y Q, Sun S G, et al. A ratiometric fluorescent sensor for phosphates: Zn2+-enhanced ICT and ligand competition [J]. Org. Biomol. Chem., 2007, 5 (2):226-228.[10]. Parkesh R, Lee T C, Gunnlaugsson T. Highly selective 4-amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) chemosensors for Zn(Ⅱ) under physiological pH conditions [J]. Org. Biomol. Chem., 2007, 5 (2):310-317.[11]. Liu Y, Zhang N, Chen Y, et al., Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn2+ [J]. Org. Lett., 2007, 9 (2):315-318.[12]. Zapata F, Caballero A, Espinosa A, et al. A simple but effective ferrocene derivative as a redox, colorimetric, and fluorescent receptor for highly selective recognition of Zn2+ ions [J]. Org. Lett., 2007, 9 (12):2385-2388.[13]. Sumalekshmy S, Henary M M, Siegel N, et al. Design of emission ratiometric metal-ion sensors with enhanced two-photon cross section and brightness [J]. J. Am. Chem. Soc., 2007, 129 (39):11888-11889.[14]. Trokowski R, Ren J M, Kalman F K, et al. Selective sensing of zinc ions with a PARACEST contrast agent [J]. Angew. Chem. Int. Edit., 2005, 44 :6920-6923.[15]. Lee S, Arunkumar A I, Chen X H, et al. Structural insights into homo- and heterotropic allosteric coupling in the zinc sensor S. aureus CzrA from Covalently Fused Dimers [J]. J. Am. Chem. Soc., 2006, 128 (6):1937-1947.[16]. Van Dongen E M W M, Dekkers L M, Spijker K, et al. Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn(Ⅱ) based on copper chaperone domains [J]. J. Am. Chem. Soc., 2006, 128 (33):10754-10762.[17]. Van Dongen E M W M, Evers T H, Dekkers L M, et al.Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(Ⅱ) affinity in the picomolar to femtomolar range [J]. J. Am. Chem. Soc., 2007, 129 (12):3494-3495.[18]. Kim H K, Liu J W, Li J, et al. Metal-dependent global folding and activity of the 8-17 DNA zyme studied by fluorescence resonance energy transfer [J]. J. Am. Chem. Soc., 2007, 129 (21):6896-6902.[19]. Frederickson J, Kasarskis E J, Ringo D, et al. A quinoline fluorescence method for visualizing and assaying the histoche-mically reactive zinc (bouton zinc) in the brain [J]. J. Neurosci. Methods, 1987, 20 (2):91-103.[20]. Zalewski P D, Forbes I J, Betts W H. Correlation of apoptosis with change in intracellular labile Zn(Ⅱ) using zinquin , a new specific fluorescent probe for Zn(Ⅱ) [J]. Biochem. J., 1993, 296 (Part 2):403-408.[21]. Coyle P, Zalewski P D, Philcox J C, et al. Measurement of zinc in hepatocytes by using a fluorescent probe, zinquin: relationship to metallothionein and intracellular zinc [J]. Biochem. J., 1994, 303 (Part 3):781-786.[22]. Fahrni C J, OHalloran T V. Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc [J]. J. Am. Chem. Soc., 1999, 121 (49):11448-11458.[23]. Kimber M C, Mahadevan I B, Lincoln S F, et al. The synthesis and fluorescent properties of analogues of the zinc(Ⅱ) specific fluorophore zinquin ester [J]. J. Org. Chem., 2000, 65 (24):8204-8209.[24]. Pearce D A, Jotterand N, Carrico I S, et al. Derivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for zinc sensors in biological systems [J]. J. Am. Chem. Soc., 2001, 123 (21):5160-5161.[25]. Dai Z, Proni G, Mancheno D, et al. Detection of zinc ions by differential circularly polarized fluorescence excitation [J]. J. Am. Chem. Soc., 2004, 126 (38):11760-11761.[26]. Zhang H, Han L F, Zachariasse K A, et al. 8-hydroxyquinoline benzoates as highly sensitive fluorescent chemosensors for transition metal ions [J]. Org. Lett., 2005, 7 (19):4217-4220.[27]. Kikuchi K, Komatsu K, Nagano T. Zinc sensing for cellular application [J]. Curr. Opin. Chem. Biol., 2004, 8 (2):182-191.[28]. Thompson R B. Studying zinc biology with fluorescence: aint we got fun [J]. Curr. Opin. Chem. Biol., 2005, 9 (5):526-532.[29]. Kimura E, Aoki S. Chemistry of zinc(Ⅱ) fluorophore sensors [J]. BioMetals, 2001, 14 (3-4):191-204.[30]. Henary M M, Wu Y, Fahrni C J. Zinc(Ⅱ)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer [J]. Chem-Eur. J., 2004, 10 :3015-3025.[31]. Walkup G K, Burdette S C, Lippard S J, et al. A new cell-permeable fluorescent probe for Zn2+ [J]. J. Am. Chem. Soc., 2000, 122 (23):5644-5645.[32]. Burdette S C, Walkup G K, Springler B, et al. Fluorescent sensors for Zn2+ based on a fluorescein platform:Synthesis, properties and intracellular distribution. [J]. J. Am. Chem. Soc., 2001, 123 (32):7831-7841.[33]. Burdette S C, Frederickson C J, Bu W, et al. ZP4, an improved neuronal Zn2+ sensor of the zinpyr family [J]. J. Am. Chem. Soc., 2003, 125 (7):1778-1787.[34]. Chang C J, Jaworski J, Nolan E M, et al. A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc [J]. Proc. Natl. Acad. Sci. USA, 2004, 101 (5):1129-1134.[35]. Goldsmith C R, Lippard S J. 6-methylpyridyl for pyridyl substitution tunes the properties of fluorescent zinc sensors of the zinpyr family [J]. Inorg. Chem., 2006, 45 (2):555-561.[36]. Nolan E M, Jaworski J, Racine M E, et al. Midrange affinity fluorescent Zn(Ⅱ) sensors of the zinpyr family: Syntheses, characterization, and biological imaging applications [J]. Inorg. Chem., 2006, 45 (24):9748-9757.[37]. Nolan E M, Ryu J W, Jaworski J, et al. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization [J]. J. Am. Chem. Soc., 2006, 128 (48):15517-15528.[38]. Zhang X A, Lovejoy K S, Jasanoff A, et al. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing [J]. Proc. Natl. Acad. Sci. USA, 2007, 104 (26):10780-10785.[39]. Wu D Y, Xie L X, Zhang C L, et al. Quinoline-based molecular clips for selective fluorescent detection of Zn2+ [J]. Dalton Trans., 2006, (29):3528-3533.[40]. Katiyar S S, Tandon S N. 1-Isonicotinoyl-2-salicylidenehydrazine as a new chelatometric reagent [J]. Talanta, 1964, 11 (5):892-894.[41]. Johnson D K, Murphy T B, Rose N J, et al. Cytotoxic chelators and chelates 1. Inhibition of DNA synthesis in cultured rodent and human cells by aroylhydrazones and by a copper(Ⅱ) complex of salicylaldehyde benzoyl hydrazone [J]. Inorg. Chim. Acta, 1982, 67 :159-165.[42]. Jiang C Q, Tang B, Wang R Y, et al. Spectrofluorimetric determination of trace amounts of aluminium with 5-bromo-salicylaldehyde salicyloylhydrazone [J]. Talanta, 1997, 44 (2):197-202.[43]. Lee P F, Yang C T, Fan D, et al. Synthesis, characterization and physicochemical properties of copper(Ⅱ) complexes containing salicylaldehyde semicarbazone [J]. Polyhedron, 2003, 22 (20):2781-2786.[44]. Wen Z C, Yang R, He H, et al. A highly selective charge transfer fluoroionophore for Cu2+ [J]. Chem. Commun., 2006, (1) :106-108.[45]. Martinez-Manez R, Sancenón F. Fluorogenic and chromogenic chemosensors and reagents for anions [J]. Chem. Rev., 2003, 103 (11):4419-4476[46]. de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches [J]. Chem. Rev., 1997, 97 (5):1515-1566.[47]. Tang B, Zhang J, Chen Z Z. Synthesis and characterization of a novel cross-linking complex of β-cyclodextrin-o-vanillin benzoylhydrazone and its selective spectrofluorimetric determination of trace amounts of zinc [J]. Spectrochim. Acta A, 2003, 59 :2519-2526.[48]. He H, Li A F, Yang R. et al. Highly selective recognition of Zn2+ by salicylaldehyde 4-ethoxybenzoyl- hydrazone [J]. J. Xiamen Univ. (Natural Science) (厦门大学学报,自然科学版), 2006, 45 (6):808-811 (in Chinese).[49]. Patel J M, Dave M P, Langalia N A, et al., Studies on antitubercular and antibacterial agents: preparation of 1-(4-aminobenzoyl)-2-benzalhydrazine and 1- -2-substituted-benzalhydrazine [J]. J. Indian Chem. Soc., 1984, 61 :718-720.[50]. Yang X, Pan Z T, Ma Y. Rhoda mine B as standard substance to measure the fluorescence-quantum yield of dichlorofluorescein [J]. Chin. J. Anal. Science (分析科学学报), 2003, 19 (6):588-591(in Chinese).[51]. SMART SAINT, Area detector control and integration software, siemens analytical X-ray systems . Inc., Madison, WI, 1996.[52]. Sheldrick G M, SHELXTL V5.1, Software Reference Manual, Bruker, AXS . Inc., Madison, WI, 1997.[53]. Gao L, Wang Y, Wang J Q, et al. A novel ZnⅡ-sensitive fluorescent chemosensor assembled within aminopropyl-functionalized mesoporous SBA-15 [J]. Inorg. Chem., 2006, 45 (17):6844-6850.[54]. Nolan E M, Lippard S J. The zinspy family of fluorescent zinc sensors: Syntheses and spectroscopic investigations [J]. Inorg. Chem., 2004, 43 (26):8310-8317.[55]. Nolan E M, Burdette S C, Harvey J H, et al. Synthesis and characterization of zinc sensors based on a monosubstituted fluorescein platform [J]. Inorg. Chem., 2004, 43 (8):2624-2635.[56]. Burdette S C, Lippard S J. The rhodafluor family. An initial study of potential ratiometric fluorescent sensors for Zn2+ [J]. Inorg. Chem., 2002, 41 (25):6816-6823.[57]. Woodroofe C C, Won A C, Lippard S J. Esterase-activated two-fluorophore system for ratiometric sensing of biological zinc(Ⅱ) [J]. Inorg. Chem., 2005, 44 (9):3112-3120.[58]. Garcia-Raso A, Fiol J J, Lopez-Zafra A, et al. Synthesis of Zn N-salicylidene-aminoacidatos: X-ray structure of ·0.25H2O and [J]. Polyhedron, 2000, 19 :673-680.
0
浏览量
59
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构