浏览全部资源
扫码关注微信
1. 湖北大学, 有机功能分子合成与应用教育部重点实验室,湖北 武汉,430062
2. 孝感学院, 化学系,湖北 孝感,432100
纸质出版日期:2008-3-20,
收稿日期:2007-7-19,
修回日期:2007-12-28,
扫 描 看 全 文
周丽荣, 周立群, 余国锋, 唐子威, 王芬. SiO<sub>2</sub>包覆铕(Ⅲ)配合物的荧光纳米粒子合成与性质[J]. 发光学报, 2008,29(2): 371-375
ZHOU Li-rong, ZHOU Li-qun, YU Guo-feng, TANG Zi-wei, WANG Fen. Preparation and Properties of SiO<sub>2</sub> Coating Europium (Ⅲ) Complex Fluorescent Nanoparticles[J]. Chinese Journal of Luminescence, 2008,29(2): 371-375
周丽荣, 周立群, 余国锋, 唐子威, 王芬. SiO<sub>2</sub>包覆铕(Ⅲ)配合物的荧光纳米粒子合成与性质[J]. 发光学报, 2008,29(2): 371-375 DOI:
ZHOU Li-rong, ZHOU Li-qun, YU Guo-feng, TANG Zi-wei, WANG Fen. Preparation and Properties of SiO<sub>2</sub> Coating Europium (Ⅲ) Complex Fluorescent Nanoparticles[J]. Chinese Journal of Luminescence, 2008,29(2): 371-375 DOI:
以前驱物pAB-DTPAA-APTEOS、正硅酸乙酯(TEOS)和三氯化铕(EuCl3)等为原料
采用油包水(W/O)的反相微乳液法
在正硅酸乙酯(TEOS)和3-氨丙基三乙氧基硅烷(APTEOS)的共同水解下
制备出新型的SiO
2
包覆铕配合物荧光纳米粒子Eu-pAB-DTPAA-AP-SiO
2
。运用TEM、IR、UV-Vis、荧光光谱等技术对荧光纳米粒子进行了表征。TEM结果表明:包覆体呈球形
分散均匀
平均粒径为40nm。纳米粒子与配体、前驱物的紫外吸收谱相比较
峰位发生了一定的红移
表明通过反相微乳液法得到的固体粉末与EuCl3反应后
已经生成配合物Eu-pAB-DTPAA-AP-SiO
2
。红外光谱研究表明
在801cm-1出现ν
Si-C
的伸缩振动峰
471cm-1处出现ν
Eu-O
的伸缩振动峰。由此证实Eu-pAB-DTPAA-AP-SiO
2
配合物的存在。荧光光谱分析表明
纳米粒子Eu-pAB-DTPAA-AP-SiO
2
表现出较好的荧光性能
位于592
615
689nm的发射峰分别归属于Eu
3+
离子的
5
D
0
→
7
F
1
、
5
D
0
→
7
F
2
和
5
D
0
→
7
F
4
跃迁
其中最强峰615nm属于Eu
3+
的特征跃迁发射。作为一种新型的荧光试剂
该纳米粒子具有粒径小
亲水性强
荧光强度大
且表面的氨基能方便地与生物分子偶联
故可作为优良的时间分辨荧光标记物用于各种高灵敏生物检测技术中。
The incorporation of rare earth complex into inorganic hybrid host materials has been extensively explored in recent studies
especially focused on SiO
2
-based materials
and the obtained materials were found to show high improvements for their thermal
mechanical properties and chemical stability. Furthermore
the materials are nanometer-sized luminescent
and become a research attractions as luminescence probes in various types of biological detection.In this paper
the fluorescent nanoparticles were prepared with pAB-DTPAA-APTEOS precursor
TEOS and EuCl3 as raw materials by means of water-in-oil (W/O) microemulsion through controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-aminopropyl-triethyloxysilane (APTEOS). Fluorescent nanoparticles were characterized with TEM
UV-vis
IR and fluorescence techniques. It can be seen from the TEM image of the phosphor that the fluorescent nanoparticles are spherical and better particle dispersity
with average particle size of 40 nm. The IR spectra of Eu-pAB-DTPAA-AP-SiO
2
has two regions
which correspond to Si-C stretching (801 cm
-1
) and Eu-O stretching (471 cm
-1
)
this confirms the existence of complex Eu-pAB-DTPAA-AP-SiO
2
. In the UV-vis spectra
compared to the absorption spectrum of pAB-DTPAA
a red shift of the first peak (from 232 nm to 260 nm) was found in the spectrum of the precursor (pAB-DTPAA-APTEOS)
no change was observed for the major at 336 nm
which indicates the information of pAB-DTPAA-APTEOS. Furthermore
after EuCl3 was added to the solution of pAB-DTPAA-APTEOS
the red shift phenomena of the absorption peaks were observed. These changes indicate that complex Eu-pAB-DTPAA-AP-SiO
2
was formed in the pAB-DTPAA-APTEOS-EuCl3 solution. The excitation and emission spectra of the nanoparticles indicate that the excitation peak wavelength is at 260 nm and the emission peak wavelength is at 615 nm. When the nanoparticles were excited by 260 nm
only the emission lines of
5
D
0
→
7
F
J
(J= 1~4) of Eu
3+
were observed
with the hypersensitive
5
D
0
→
7
F
2
transition as the most prominently single radiation peak without splitting. As a new analytical reagent
the fluorescent nanoparticles combine the advantages of luminophore-doped silica nanoparticle probe and lanthanide latex fluorescence probe including smaller size (about 40 nm)
high hydrophilicity and biocompatibility. Furthermore
the amino groups directly introduced to the nanoparticles surface by using APTEOS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The particles are potential of good biocompatibility and can be excepted as efficient biological labels.
SiO2铕配合物微乳液荧光纳米粒子包覆
SiO2europium complexmicroemulsionfluorescent nanoparticlescoating
Tang Aiwei,Teng Feng,Gao Yinhao,et al.Synthesis and luminescent properties of Core/shell/shell structural CdSe/CdS/ZnS nanocrystals[J].Chin.J.Lumin.(发光学报),2006,27(2):234-238 (in Chiense).
Chao Kefu,Zhang Youlin,Kong Xiangqui,et al.A study on fluorescence spectroscopy of immobilizing FITC labeled antibody between fiber optic surface and biomolecule[J].Chin.J.Lumin.(发光学报),2007,28(6):940-944 (in Chinese).
Patolsky F,Gill R,Weizmann Y,et al.Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots[J].J.Am.Chem.Soc.,2003,125(46):13918-13919.
Harma H,Soukka T,Lonnberg S,et al.Zeptomole detection sensitivity of prostate-specific antigen in a rapid microtitre plate assay using time-resolved fluorescence[J].Lumin.,2000,15(6):351-355.
Vaisanen V,Harma H,Lilja H,et al.Time-resolved fluorescence imaging for quantitative histochemistry using lanthanide chelates in nanoparticles and conjugated to monoclonal antibodies[J].Lumin.,2000,15(6):389-397.
Harma H,Soukka T,Lovgren T.Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen[J].Clin.Chem.,2001,47(3):561-568.
Santra S,Zhang P,Wang K,et al.Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers[J].Anal.Chem.,2001,73(20):4988-4993.
Santra S,Wang K,Tapec R,et al.Development of novel dye-doped silica nanoparticles for biomarker application[J].J.Biomed.Opt.,2001,6(2):160-166.
Hilliard L R,Zhao X,Tan W.Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies[J].Anal.Chim.Acta,2002,470(1):51-56.
Qhobosheane M,Santra S,Zhang P,et al.Biochemically functionalized silica nanoparticles[J].Analyst,2001,126(8):1274-1278.
Santra S,Tapec R,Theodoropoulou N,et al.Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion:the effect of nonionic surfactants[J].Langmuir,2001,17(10):2900-2906.
Soini E,Lovgren T.Time-resolved fluorescence of lanthanide probes and applications in biotechnology[Review].CRC Crit.Rev.Anal.Chem.,1987,18:105-154.
Gudgin Dickson Eva F,Alfred Pollak,Diamandis E P.Ultrasensitive bioanalytical assays using time-resolved fluorescence detection[J].Pharmacol.Ther.,1995,66(2):207-235.
Diamandis E P.Immunoassay with time-resolved fluorescence spectroscopy:principles and applications[J].Clin.Biochem.,1988,21(3):139-150.
Yuan J L,Wang G L,Majima K,et al.Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay[J].Anal.Chem.,2001,73(8):1869-1876.
Ning Q Y,Meng J X,Wang H M.Preparation of novel terbium(Ⅲ) chelate-doped fluorescent silica nanoparticles[J].J.the Chinese Rare Earth Society (中国稀土学报),2006,3(24):289-292 (in Chinese)
Wang X M,Kong W,Xu H.Preparation of EDTA Anhydride and DTPA Anhydride[M].Zhengzhou:Henan Chemical Industry,1999,14-15 (in Chinese)
0
浏览量
50
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构