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Abstract： The preparation of purple-emissive carbon dots （P-CDs） usually accompanies the disadvantages of com ⁃
plicated preparation， low quantum yield （QY） and low fluorescence intensity.  Herein， we used o-phenylenediamine 
（OPD） and m-phenylenediamine （MPD） as nitrogen sources and citric acid （CA） as carbon source to prepare P-

CDs.  Only using simple one-step hydrothermal method under a low experimental temperature of 120 ℃， we success⁃
fully obtained highly luminescent P-CDs with absolute QY of 5. 3%.  The results of XPS and FT-IR revealed that all 
synthesized P-CDs contained similar functional groups but with different contents.  The fluorescence intensity of P-

CDs could be effectively regulated by the amount ratio of OPD to MPD.  The resulting P-CDs also possessed consider⁃
able photostability and salt stability.  Notably， the fluorescence color of P-CDs remarkably transformed into green as 
the pH being in the range of 1-3 or 10-13.  The aforementioned unique pH-dependent fluorescence chromic behav⁃
iors ensured the potential application in the optical pH sensing.
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高效紫色荧光碳点制备及光学 pH 检测应用
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摘要： 紫色荧光碳点（P⁃CDs）的制备通常存在制备复杂、量子产率低、荧光强度低等缺点。本文以邻苯二胺

（OPD）和间苯二胺（MPD）为氮源，柠檬酸为碳源，在 120 ℃的低温条件下，通过一步水热法成功获得了绝对量

子产率为 5.3% 的高荧光 P⁃CDs。XPS 和 FT⁃IR 结果表明，所有合成的 P⁃CDs 具有相似的官能团，但含量不同；

OPD/MPD 的比例可有效调控 P⁃CDs 的荧光强度。所得 P⁃CDs 具有较好的光稳定性和盐稳定性。值得注意的

是，当 pH 为 1~3 或 10~13 时，P⁃CDs 的荧光颜色明显转变为绿色。上述独特的 pH 依赖性荧光色行为确保了其

在光学 pH 传感中的潜在应用。
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1　Introduction
Carbon dots（CDs） are an emergent class of car⁃

bon-based fluorescent nanomaterials with outstand⁃
ing properties of excellent electron donating/accept⁃
ing abilities[1], biocompatibility[2], ecofriendly[3], chem⁃
ical inertness, good water solubility and strong fluo⁃
rescence[4-7].  During the past few decades, numerous 
researches have been carried out on various CDs for 
promising applications in fields of biomedicine[8-11], 
optoelectronics[12], sensing[13-14], photovoltaics[15], and 
electrocatalysis[16].  The CDs are mainly composed of 
carbon and oxygen elements, exhibiting a spherical 
state with a size range of 1-10 nm.  They are pre⁃
dominantly amorphous with a sp2 hybridized network 
of carbon[17].

In general, two main routes have been applied 
to prepare photoluminescent CDs, including top-

down and bottom-up methods[18].  In the route of top-

down, large carbon structures are exfoliated into 
small size CDs by chemical oxidation, laser ablation, 
electrochemical synthesis as well as arc-discharting.  
In these early stages, the CDs are usually prepared 
through the top-down method.  Afterwards, these bot⁃
tom-up techniques served as a new paradigm for ad⁃
vanced synthesis technique is slipping into the main⁃
stream through the extensive concern and pioneering 
studies[19].  By contrast, bottom-up strategies are con⁃
sidered as the routes to obtain CDs by direct pyroly⁃
sis of small molecules[19].  Numerous bottom-up syn⁃
thetic methods, including microwave-assisted synthe⁃
sis, ultrasonic-assisted approach, hydrothermal treat⁃
ment and thermal decomposition, have been devel⁃
oped[4].  Hydrothermal strategy, due to its low cost 
and easy manipulated parameters, is one of the most 
widespread methods to prepare CDs.  However, com⁃
pared to blue, yellow or green CDs, there is scarce 
research on the preparation and application of P-

CDs.  Even if there are reports that the preparation 
of P-CD is suffered from higher temperature or the 
use of organic reagents[20-21], leading to expensive 
costs and poor environmental protection for large 
scale application.  Secondly, ultraviolet emission ma⁃
terials have an irreplaceable role in sterilization, an⁃

ti-counterfeiting, biomedicine and other aspects[22].  
However, since ultraviolet emission materials from 
noble gases and wideband gap semiconductors are 
expensive and rare, the potential application of P-

CDs ultraviolet luminescence is of great value.
Furthermore, various doping methods have 

been applied to tune the fluorescent properties of 
CDs and deemed to be one of the most promising en⁃
gineering methods to synthesize highly fluorescent 
CDs[23].  Owing to the similarly atomic size of nitrogen 
and carbon, nitrogen doping becomes the most com ⁃
monly used strategy to regulate the properties of CDs.  
Although CDs with various colors fluoresce through 
doping or other strategies exhibit good photolumines⁃
cence（PL）, P-CDs still have the disadvantages of low 
fluorescence intensity and low quantum yield（QY）.

The pH value plays a critical role in both envi⁃
ronmental and biological processes[24].  Since tight 
regulation of intracellular pH value is an important 
physiological function of organisms[25], achieving the 
visualization of such regulation will facilitate the un⁃
derstanding of physiological and pathological pro⁃
cesses[26-27].  Therefore, various methods and tech⁃
niques for intracellular pH sensing have been devel⁃
oped[28].  For example, Jin et al.  demonstrated intra⁃
cellular pH regulation inside living cells by using 
CDs as probes[29].  Plenty of CD probes have been 
widely used to monitor local pH values inside cells 
by measuring the increase or decrease in fluores⁃
cence intensity[30-32].  Generally, pH sensors are man⁃
ufactured by CDs coated paper to meet the require⁃
ment of pH detection in the environment[33].  From 
above-mentioned, fluorescent CD probes have been 
established for the pH detection in environmental 
samples and vivo/vitro bioanalysis[4].  As far as we 
know, the fluorescence colors of CD probes can 
change with the switching of strong acidity and alka⁃
linity of the environment.

In summary, in addition to the challenges of op⁃
timization of preparation conditions and improve⁃
ment of optical properties, P-CDs are still faced with 
limited research as short-wavelength CDs, and it is 
urgent to expand the application of P-CDs.  In this 
study, citric acid（CA） as a carbon source and two 
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anilines—o-phenylenediamine（OPD） and m-phenyl⁃
enediamine（MPD） as nitrogen sources were adopted 
to synthesize P-CDs through a one-step hydrother⁃
mal method, as shown in Fig. 1.  In addition, the ef⁃
fects of MPD concentrations on the fluorescence 
properties of P-CDs have been deeply investigated 

by changing the molar ratios of CA, OPD and MPD, 
which is expected to improve the fluorescence inten⁃
sity and QY of P-CDs.  Furthermore, we investigated 
the pH-dependent fluorescence chromic behaviors of 
P-CDs and proposed to use P-CDs as pH sensing 
probes.

2　Experiment
2. 1　Synthesis of P⁃CDs

P-CDs were prepared by a hydrothermal meth⁃
od as depicted in Fig.  1.  In particular, the molar ra⁃
tio of CA, OPD and MPD was 0. 67∶1∶1, and they 
were dissolved in 30 mL deionized water to form a 
clear solution （pH value maintained at 6 by using 
NaOH）.  The acquired solution （50 mL） was put in⁃
to a Teflon-lined autoclave and then transferred to a 
homothermal oven at 120 ℃ for 6 h , and finally 
cooled to room temperature.  To remove larger parti⁃
cles, the obtained solution was filtrated with ultra-fil⁃
tration membrane（0. 22 μm）, and then dialysed 
through dialysis bag （500 u） for 48 h to obtained de⁃
sired P-CDs aqueous solution.  Subsequently, the P-

CDs solution was kept in a freeze drier for 48 h to ob⁃
tain solid P-CDs, which can be stored at room tem⁃
perature.

P-CDs with different optical properties were 
synthesized under the same hydrothermal synthesis 
conditions by regulating the amounts of MPD（1-10 
mol/L）, but maintaining the constant concentration 
of CA（6. 7 mol/L） and OPD（10 mol/L）.  The ob⁃
tained P-CDs were defined as P-CDsn where n =1, 2, 
3, 4, 5, 6, 7, 8, 9, 10 mol/L MPD.

2. 2　Characterization
Transmission electron microscopy（TEM, JEM-

2100, Japan） was used for analyzing the size and lat⁃
tice structure of P-CDs.  Flourier transform infrared 
spectrometer（FTIR, Nicolet6700, the United States） 
was applied to identify primary functional groups.  
Fluorescence spectra of CDs were recorded on an 
FL-2500 fluorescence spectrophotometer（FLS920, 
Edinburgh, Scotland）.  Absolute QY was measured 
by an integrating sphere（FLS920）.  A UV-3600 
spectrophotometer （Tokyo, Japan） with a 1 cm path 
length cuvette was used to collected the UV Vis ab⁃
sorption spectrum.  The X-ray photoelectron spec⁃
troscopy（XPS, Escalab250, the United States） of 
CDs were used to analyze the surface functional 
groups and element contents of CDs, and all results 
are based on a standard C1s peak with a binding en⁃
ergy calibration at 284. 6 eV.  The structural crystal⁃
linity of CDs was investigated by Powder X-ray dif⁃
fraction（XRD; Bruker D8 Advance Diffractometer, 
the range of 2θ being 10°- 90°）.
2. 3　Optical pH Measurement

Experiments for the fluorescence detection of 
different pH were carried out in aqueous solution.  
The PL mechanism and pH-dependent fluorescence 
discoloration behaviors of P-CDs are shown in Fig. 2.  

CA MPD OPD

C N O H

Hydrothermal
120 ℃, 6 h

P⁃CDs
Fig.1　The synthesis route for P-CDs
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Firstly, P-CDs aqueous solution（1 mg/mL） was ob⁃
tained by dissolving 0. 01 g P-CDs in deionized water
（10 mL）.  Afterward, the pH was adjusted to 1-13 

by sodium hydroxide or hydrochloric acid aqueous 
solution.  Different Fluorescence spectra were re⁃
corded at 380 nm excitation light.

3　Results and Discussion
3. 1　Morphology and Structure Characteriza⁃

tion
The morphological analysis of P-CDs was shown 

in Fig. 3（a）.  The P-CDs had a splendid dispersion 
with nearly similar sizes.  The high resolution trans⁃
mission electron microscopy （HRTEM） image（inset 

in Fig. 3（a）） implied that the clear lattice fringes of 
the P-CDs possess a lattice spacing of 0. 278 nm, 
which was attributed to the （020） lattice plane of 
the P-CDs[34].  The dimension distributions of P-CDs 
were homogeneously illustrated in Fig. 3（b）.  Nota⁃
bly, the average particle size of the CDs was approxi⁃
mately 2. 08 nm.

X-ray photoelectron spectra of P-CDs are shown 
in Fig. 4.  The XPS survey spectrum in Fig. 4（a） in⁃
dicated that the P-CDs comprised C（1s at 285 eV）, 
O（1s at 531 eV）, N（1s at 399 eV） elements with 
different contents of 64. 08%, 28. 18% and 7. 74%, 
respectively.  Furthermore, peak deconvolutions of 
the three elements were conducted to further inter⁃
pret their nature.  As displayed in Fig. 4（b）, the 
high-resolution spectrum of C1s showed three main 
peaks at 284. 78, 286. 38, 288. 18 eV which were 

corresponded to C=C（66%）, C—O/C—N（2. 18%） 
and C=O（31. 83%）, respectively.  The results indi⁃
cated that the P-CDs were mainly composed of C=C 
and were rich in C—O and C=O, which implied 
that P-CDs might have oxygen-rich functional groups 
based on the structure of the C=C.  As shown in 
Fig. 4（c）, the N1s demonstrated that three main 
peaks were at 398. 77, 400. 12, 401. 21 eV, respec⁃
tively, which meant that nitrogen atoms existed in 
the forms of pyrrole nitrogen, pyridine nitrogen and 

HCl

pH=1-3

HCl/NaOH

pH=4-9

pH=10-13

NaOH
P⁃CDsP⁃CDs

Daylight

λex380 nm λem465 nm

λex380 nm λem427 nm

λex380 nm λem465 nm

λex380 nm λem427 nm

Fig.2　pH-dependent fluorescence chromic behaviors of P-CDs
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Fig.3　（a）TEM images and the lattice spacing of the P-CDs. （b）The size distribution was calculated from the TEM image in （a）.
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graphite nitrogen as well.  In addition, the spectrum 
of O1s （in Fig. 4（d）） can be divided into two peaks 
of 530. 67 eV and 531. 62 eV corresponding to C=O
（30. 56%） and C—O（69. 44%）, respectively.  It 

can be inferred from the XPS results that the P-CDs 
comprised an aromatic polymer structure and were 
rich in oxygen-based groups such as the carboxyl, 
carbonyl, and hydroxyl groups.

The FT-IR spectrum was also detected, and the 
result was consistent with the XPS results.  As 
shown in Fig. 4（e）, the wide peak at 3 437 cm-1 was 
the stretching vibration of —OH or —NH, indicat⁃
ing the existence of hydroxyl or carboxyl groups and 
amino-groups in P-CDs.  The sharp peak at 1 602 
cm-1 was the telescopic vibration peak of C=C or    
C=N, indicating that there were numerous sp2 struc⁃
tures that enriched the graphene in the P-CDs.  
These results were also consistent with those of 
TEM.  In addition, the absorption peak at 1 261 cm-1 
belonged to the stretching vibration of C—O—C.  
Fig. 4（f） showed the XRD pattern of P-CDs.  It ex⁃
hibited one strong peak and one weak peak at the 
range of 2θ =25° and 2θ =44° , that were assigned to 
（002） and （100） crystal planes of graphetic carbon, 
respectively, indicating the amorphous nature of 
CDs.
3. 2　Optical Properties of P⁃CDs

The optical properties were discussed accord⁃
ing to the UV-Vis and fluorescence spectra.  The flu⁃
orescence absolute QY（ηQY） of P-CDs was calculat⁃

ed to be 5. 30% according to ηQY equation as shown 
in Eq.（1）:

ηQY = ∫ L emission

∫E solvent - ∫E sample
， （1）

where ηQY is the absolute quantum yield, Lemission is 
the number of fluorescent emission photons of the   
P-CDs, Esolvent and Esample are photon numbers of     
water and the excited by excitation light source, re⁃
spectively.

According to the UV-Vis spectra shown in 
Fig. 5（a）, the P-CDs had a wide absorption width 
between 230 nm and 350 nm.  A sharp characteristic 
peak appeared at 237 nm induced by the graphite 
core of P-CDs, which is the typical optical character⁃
istic of GQDs[35].  The absorbance peak at 237 nm 
was followed by a relatively but distinct peak at 280 
nm.  This can be attributed to the π -π* transition of 
the conjugated C=C bond of graphitic carbon（sp2 
hybridized） present on the surface and the n-π* tran⁃
sition of surface functional groups[36].  The absorbance 
within 310-400 nm range was broad and no obvious 
peaks could be identified after deconvolution.       
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Fig.4　（a）Low range XPS spectra of P-CDs. High resolution de-convoluted XPS peaks for C1s（b），O1s（c） and N1s（d） of P-

CDs. （e）FT-IR spectra of P-CDs. （f）XRD pattern of P-CDs.

925



第  44 卷发 光 学 报

According to that, the absorbance was not only de⁃
cided by the specific chromophore, but probably re⁃
lated to multiple factors such as surface defects, 
presence of impurities and adsorbed molecules on 
the surface[37].  Further optical characteristics of the 
P-CDs are shown in Fig. 5（a）.  The optimal excita⁃
tion wavelength of the P-CDs was 380 nm, and the 
emission wavelength was 427 nm, which was located 
in the purple region of the visible spectrum.

At different excitation wavelengths, the maxi-
mum emission wavelengths of P-CDs remained 

around 427 nm（Fig. 5（b））, which implied the P-

CDs have good mono-chromaticity owing to the uni⁃
formity of size and surface states[38].  The constant 
emission wavelength also indicated that the P-CDs 
only contained a single emitter, which can avoid au⁃
to-fluorescence and be favorable for their applica⁃
tion in quantitative assays.  It can be also found 
that the P-CDs presented the highest fluorescent in⁃
tensity when excited at 380 nm, thus 380 nm was 
selected as the excitation wavelength for the follow⁃
ing experiments[33].

The stability was of particular importance for 
nanomaterials.  To obtain better performance, sever⁃
al detection conditions（such as UV irradiation time 
and NaCl concentration） were investigated.  The flu⁃
orescence intensity of P-CDs slightly decreased with 
the excitation of UV irradiation time, but the fluores⁃
cence intensity was not affected by high concentra⁃
tion of NaCl solution（see Fig. S1）, indicating that P-

CDs have good photostability and salt stability.
3. 3　Affecting Role of MPD on the Fluores⁃

cence Property
As shown in Fig. 6, the fluorescence property of 

P-CDs significantly changed with the increasing ad⁃
ditive amounts of MPD.  The fluorescence spectra 
showed an optimized excitation peaked at 380 nm, 
under which the maximum emission wavelength was 
observed around 427 nm（Fig. 6）.  It is interesting to 
find that the fluorescence intensity of P-CDs showed 
an overall upward trend with the addition of MPD, 
but there emerged a large fluctuation in case of MPD 
being 5 mol/L or 7 mol/L.  This fluctuation may be 

related to sp2/sp3 carbon hybridization domain in the 
structure of P-CDs.

In order to further reveal the relationship be⁃
tween the change of CDs properties and MPD addi⁃
tive amount, XPS characterization（Fig. S2） and FT-

IR analysis（Fig. S3） were carried out for ten sam⁃
ples of P-CDs.  The XPS spectra of all P-CDs 
showed three typical peaks: O1s（~531. 72 eV）, N1s
（~399. 38 eV） and C1s（~284. 99 eV）.  FT-IR re⁃
sults showed that all P-CDs showed similar chemical 
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Fig.5　（a）UV-Vis absorption， excitation and emission spectra of the P-CDs. （b）Fluorescence spectra of P-CDs excited at differ⁃
ent wavelengths.
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bonds and structures.
According to the proportion of atoms of differ⁃

ent C species in XPS, the ratio of sp2/sp3 hybridiza⁃
tion domain of ten P-CDs were calculated（see 
Tab. 1）, and the relationship between fluorescence 
intensity of different P-CDs and sp2/sp3 hybridization 
domain was further explored.  In cases of MPD being 
of 0-4 mol/L, the change of sp2/sp3 hybridization fac⁃
tor was opposite to the fluorescence intensity.  Soon 
afterwards, fluorescence intensity and hybridization 
factor kept step with each other, as shown in Fig. 7.

When the reaction raw materials were only 
OPD and CA, amidation reaction would occur
（Fig. 8（a））.  Low temperature may facilitate the for⁃
mation of zigzag edge carbon net structure thereby 

occurring sp2C in-plane vibration, leading to the red 
shift of emission peak of CDs and easier formation of 
long wavelength CDs.  With the addition of MPD, de⁃
hydration reaction may dominate this process and 
produce an armchair edge structure with sp3C vibra⁃
tion（Fig. 8（b））, which could cause the blue shift of 
the emission peak of CDs and make the generated 
CDs emit purple fluorescence[39].  Therefore, as the 
amount of MPD increased, the fluorescence intensity 
of P-CDs would be enhanced.  However, due to ex⁃
cessive aniline, the amino groups of OPD and MPD 
and carboxyl groups of CA would have competitive 
reactions.  The contents of sp2C and sp3C would 
change and showed great fluctuations, but the fluo⁃
rescence intensity of P-CDs generally presented an 
upward trend.

3. 4　pH Sensing
The fluorescence color of P-CDs was mutated in 

extreme acid and alkali environment.  Therefore, the 
application of P-CDs in pH sensing was explored.  
We investigated the PL activities of P-CDs at differ⁃

ent pH levels（pH=1-13）.  Fluorescence intensities 
with different pH are shown in Fig. 9（a） and （b）.  
Interestingly, the obtained P-CDs exhibited particu⁃
lar pH-dependent fluorescence behaviors.  At 380 nm 
excitation, the P-CDs exhibited two distinct colors i.
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Tab. 1　Elemental analysis of XPS determination and 
calculation of conjugate region
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P⁃CDs1
P⁃CDs2
P⁃CDs3
P⁃CDs4
P⁃CDs5
P⁃CDs6
P⁃CDs7
P⁃CDs8
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P⁃CDs10

C/%
C—C
24. 67
32. 75
36. 35
25. 15
27. 89
27. 41
34. 57
27. 22
27. 14
18. 33

C=C
23. 62
13. 43
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25. 73
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e.  green fluorescent at strong acid（pH=1-3） or alka⁃
li solution（pH=10-13）, but purple fluorescent at 
neutral solution（pH=4-9）.  The details of the three 
fluorescent zones were as follows.

Zone Ⅰ（pH=1-3）: In extreme acid environment, 
the strong carboxyl protonation on the surface of P-

CDs[40-41] will lead to the change of the existing form 
of functional groups on the surface of P-CDs and af⁃
fect the surface defects, and finally resulting in the 
mutation of the fluorescence color of CDs to green
（Fig. 9（d））.  It was seen that with the decreasing 
pH changed from 3 to 1, emission intensity of CDs 
gradually reduced and higher concentration of H+

（pH=1） intensity was quenched almost 97%.  The 
surface carboxyl groups of CDs were protonated at 
lower pH level and aggregation of CDs occurred due 
to protonation of surface groups leading to fluores⁃
cence quenching.  Therefore, the fluorescence inten⁃
sity green emission of P-CDs was almost quenched 
at pH=1.

Zone Ⅱ（pH=4-9）: The fluorescence intensity 
did not change obviously, showing pH independence 
in this zone.

Zone Ⅲ（pH=10-13）: In extreme alkaline envi⁃
ronment, deprotonation occurred on the surface of P-

CDs, which changed the functional group states of 
CDs and made fluorescent CDs emit green light 
（Fig. 9（d））[42].  The CDs were stable in the pH range 
of 10 to 13, that is, the fluorescence intensity de⁃
creased only slightly with the increase of pH.

Because of the color mutation in the pH re⁃
sponse process, P-CDs were proposed to be used in 
pH sensing.  Therefore, the stability and repeatabili⁃
ty of pH detection should be investigated.  We have 
carried out this pH sensing experiments up to 5 re⁃
peat circulations by alternating pH at 2, 7 and 13, re⁃
spectively.  It can be seen that the P-CDs showed a 
remarkable pH-switching fluorescence property with 
no visible perturbation even after five cycles, imply⁃
ing the high pH-reversibility （Fig. 9（c））.

Finally, this work was compared with some re⁃
cently reported works.  As displayed in Tab. 2, those 
CDs prepared by solvothermal methods（only using 
CA/OPD） mostly inclined to emit blue or green fluo⁃

rescence[43].  Moreover, benefiting to the participation 
of MPD, this work decreased the reaction tempera⁃
ture from 240 ℃[20] to 120 ℃, only using water as the 
solvent.
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Fig.9　（a）The emission spectra of P-CDs at different pH. （b）The three fluorescent zones. （c）pH reversibility. （d）Colors of P-

CDs aqueous solution under UV light.

928



第  5 期           WU Congying， et al. ： Preparation and Application of Highly Fluorescent Purple-emissive Carbon Dots for …

4　Conclusions
In summary, using a simple one-pot hydrother⁃

mal method, P-CDs were successfully prepared from 
CA, OPD and MPD, avoiding strong acid/alkali con⁃
ditions and high synthesis temperature.  The result⁃
ing P-CDs demonstrated good water solubility, high 
fluorescence intensity, and good optical stability.  
The fluorescence intensity of P-CDs could be effec⁃
tively regulated by adjusting the addition amount of 
MPD.  With the increase of aniline, the competition 
between OPD and MPD was gradually strengthened, 

resulting in the changes of sp2C/sp3C in P-CDs struc⁃
ture, as well as the fluorescence intensity.  The resul⁃
tant P-CDs presented excellent discoloration perfor⁃
mance under extreme acid/alkali environment.  The 
significant fluorescence chromic properties coupled 
with high reversibility and repeatability guarantee 
the application of P-CDs in the fields of pH sensors 
in organisms.

Supplementary Information and Response Letter are 
available for this paper at: http://cjl. lightpublishing.
cn/thesisDetails#10.37188/CJL.20220330.
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