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Abstract：A hybrid nanosystem of upconversion-bismuth integration（denoted as UBDAs）is designed and synthe‐
sized for near infrared（NIR）light-driven chemo-photothermal therapy. The obtained UBDAs present excellent photo‐
thermal conversion capacity（~28. 5%）and good biocompatibility. Meanwhile，under excitation of NIR，UBDAs can
emit ultraviolet/visible light，which promotes the continuous rotation-flip movement of the photosensitizer azobenzene
in the mesoporous，thereby achieving the controlled drug release and avoiding the side effects of traditional ultraviolet
light excitation on biological tissues. Photothermal experiments show that UBDAs hybrid nanosystems have a good
photothermal effect under 980 nm laser irradiation. In addition，based on Tm3+ and Bi element the UBDAs are ex‐
pected to be used in upconversion luminescence and X-ray computed tomography（CT）imaging to achieve dual-mode
imaging-mediated and single NIR-driven chemotherapy and photothermal therapy. Therefore，this work provides a
new idea for the integration of diagnosis and synergistically enhanced antitumor therapy.
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摘要：设计并合成了一种用于近红外光驱动的化学‐光热治疗的上转换‐铋纳米体系诊疗剂（UBDAs），其具有

出色的光热转换能力（28.5%）和良好的生物相容性。同时，在 980 nm近红外光的激发下，UBDAs能够发射紫

外/可见光，用于促进光敏剂偶氮苯在介孔中的连续旋转‐翻转运动，从而实现药物的可控释放，且利用近红外

光激发能够有效避免传统紫外光对生物组织的副作用。光热实验表明，UBDAs杂化纳米体系在 980 nm激光

照射下具有良好的光热效应。此外，含有 Tm3+和 Bi元素的 UBDAs有望用于上转换发光成像和 X射线计算机
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断层成像，进而实现双模成像介导且单一近红外光激发的癌症化学疗法和光热疗法。该研究结果为诊断和协

同增强抗肿瘤治疗的综合研究提供了新的思路。

关 键 词：上转换发光；成像；光热治疗；药物释放；杂化纳米体系

1 Introduction
Because of its high efficiency, low invasion, and

remote controllability, photothermal therapy is re‐
garded as one of the most promising therapeutic
strategies for antitumor therapy. However, long-term
chemotherapy has caused serious toxic and side ef‐
fects on biological specimens and living tissues,
which has brought great difficulties to treatment. It
is well known that synergistic treatment has
achieved remarkable results in the treatment of vari‐
ous diseases. Therefore, it is necessary to combine
other treatments with chemotherapy to achieve syner‐
gistic effect in order to overcome the shortcomings of
chemotherapy[1].

Photothermal therapy（PTT）causes irreversible
damage to tumor tissue and produces good therapeu‐
tic effects owing to its advantages, such as non-inva‐
sive, high selectivity, and deep penetration depth in
biological therapy[2]. In photothermal therapy, near-
infrared（NIR） laser energy can be absorbed by the
photothermal agent and converted into heat, causing
the death of tumor cells[3]. Up to now, noble metal
nanoparticles（Au, Pd, and Pt, etc.）[4-6], metal chalco‐
genide compounds, transition metal disulfides[7-9] and
carbon nanomaterials, etc. have been demonstrated
as promising photothermal agents for cancer treat‐
ment[10]. However, most of them have the disadvan‐
tages of high price, toxicity, and complicated prepa‐
ration process. Therefore, developing photothermal
reagents with low-cost, non-toxic, and environment-
ally friendly synthetic routes has become one of the
hot research spots[11].

Bismuth（Bi） is a heavy metal element with a
high atomic number（Z=83）and has a good X-ray at‐
tenuation coefficient（5. 74 cm2·g-1, 100 keV）[12].
More importantly, compared with other noblemetals
（Au, Pd, and Pt, etc.）, Bi has the advantages of non-

toxicity and low cost, and Bi is an inexpensive

“green”metal as well[13]. Moreover, Bi shows a good
photothermal conversion ability with a strong NIR
absorption capacity. As well known, the long-wave‐
length NIR light displays better tissue-penetrating
capability due to its high maximum permissible ex‐
posure and fine spatio-temporal resolution, also pro‐
vides many possibilities for tumor therapy with im ‐
proved effectiveness, especially in PTT. Therefore,
the nanomaterials based on Bi that triggered by NIR
light are expected to be potential photothermal therapy
agents[14-15].

Among the reported candidate materials for op‐
tical imaging, rare-earth doped upconversion nano-
particles（UCNPs）have been widely used as imag‐
ing agents in tumor diagnosis due to their unique op‐
tical properties[16-25]. UCNPs can convert NIR light
into ultraviolet light, visible light, or NIR light
through anti-Stokes displacement. In addition, the
hollow mesoporous-type nanocarriers can be used as
light-responsive drug carriers, which have many ad‐
vantages, such as low drug loading rate and good bio‐
compatibility. The photomechanical azobenzene can
create a continuous rotation-inversion movement un‐
der the upconverted UV/visible light that emitted by
UCNPs, thereby achieving a photo-responsive con‐
trolled drug release to biological tissues[1,17].

Recent progress on the role of upconversion
nanoparticles in cellular therapy suggests that its via‐
bility not only as a stimulator and in vivo imaging
probe, but more importantly, as a real-time monitor
of cellular treatments[16-17]. Here, we develop a dual-
mode（upconversion luminescence and CT） imag‐
ing-mediated and single NIR laser-driven theranos‐
tic agent for chemo-photothermal therapy. The final
UBDAs exhibit good biocompatibility, and the sin‐
gle NIR laser responsive photothermal and drug-re‐
leasing properties were studied. Moreover, the live/
dead cell staining assay was performed, demonstrat‐
ing the effective tumor ablation through synergistic
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chemo-photothermal therapy.
2 Experiment
2. 1 Materials

Rare-earth chlorides RECl3·6H2O（99. 99%）
（RE=Y, Yb, Tm）, 1-octadecane（90%）, and oleic acid
（OA, 90%）, polyvinyl pyrrolidone（PVP）（99%）,
hexadecyl trimethyl ammonium bromide（CTAB,
99%）, tetraethyl orthosilicate（TEOS）, 3-amino-pro‐
pyl trimethoxysilane（APTES, 98%）, and 4-phenyl-
azobenzoyl chloride（AZO, 99. 9%）were bought from
Sigma-Aldrich Co. , Ltd. Methanol（CH3OH, 99. 5%）,
Sodium borohydride（NaBH4, 98%）, Bismuth nitrate
（Bi（NO3）3·5H2O, 99%）, dimethyl sulfoxide（C2H6OS,
99. 8%）, ammonium fluoride（NH4F, 98%）, and so‐
dium hydroxide（NaOH, 96%） were obtained from
Aladdin Company. Doxorubicin hydrochloride（98%）
was obtained from Jingchun Biotech Co. , Ltd. Cy‐
clohexane（C6H12, 99. 7%）, ethanol（C2H6O, 99. 7%）
were purchased from Sinopharm Co. , Ltd. Ultrapure
deionized water（Millipore system）was used for all
experiments.
2. 2 Synthesis of Bi⁃PVP Ultra⁃small Nanopar⁃

ticles
Bi-PVP was synthesized according to the previ‐

ous report with minor modification[13]. Bismuth ni‐
trate（0. 1 g）and PVP（0. 3 g）were added to a solu‐
tion containing 10 mL of glycerol and 5 mL of etha‐
nol, heated to 60 ℃, and stirred for 1 h. Sodium bo‐
rohydride（0. 05 g）was quickly added and stirred for
1 min. Bi-PVP ultra-small nanoparticles were col‐
lected by centrifugation, washed two times with wa‐
ter and ethanol at 4 ℃ , then dispersed in ultrapure
water（10 mL）.
2. 3 Synthesis of Mesoporous Silica⁃coated Up⁃

conversion Luminescent Nanomaterials
（Denoted as UB@mSiO2）

The NaYF4∶20%Yb, 0. 5%Tm（UCNPs） were
obtained according to our previous method[25]. 2 mL
of UCNPs, 0. 1 g of CTAB and 20 mL of deionized
water as a surfactant were injected into a small bea‐
ker, heated to 60 ℃ and stirred for 1 h, then cooled
to room temperature with stirring for 12 h. 40 mL of
water, 6 mL of ethanol, Bi-PVP ultra-small nanopar‐

ticles, and 150 μL of 2 mol/L sodium hydroxide solu‐
tion were injected into a 250 mL two-necked bottle
connecting with a reflux condenser and continuously
stirred at 70 ℃ . 200 μL of TEOS was added to the
beaker at a constant speed and stirred for 2 h under
a reflux condenser[26-27]. The products were centrifu‐
gation, washed several times with ethanol, and then
dispersed in 10 mL of ethanol. Subsequently, 1. 2 g
of ammonium nitrate in 190 mL of ethanol was
dropped slowly and kept stirring for 12 h at 60 ℃ .
UB@mSiO2 was collected by centrifugation, washed
several times with ethanol, then dispersed in ethanol
（10 mL）.
2. 4 Synthesis of Amino ⁃modified UB@mSiO2

Nanomaterials（DenotedasUB@mSiO2⁃NH2）

200 μL of APTES and 15 mL of UB@mSiO2
were injected into a 50 mL flask and stirred for 48 h
at 25 ℃. Amino-modified nanomaterials UB@mSiO2-

NH2 were collected by centrifugation, washed several
times with ethanol, and then dispersed in ultrapure
water（10 mL）.
2. 5 Synthesis of Hybrid Nanomaterials Load⁃

ing with DOX（Named as UBDs）
5 mL of DOX（1 mg·mL-1 doxorubicin hydro‐

chloride aqueous solution）and 10 mL of UB@mSiO2-

NH2 were injected into a 50 mL flask and stirred for
48 h. The hybrid nanomaterials loaded with DOX
were collected by centrifugation, washed several
times with ethanol, denoted as UBDs, and then dis‐
persed in dimethyl sulfoxide（DMSO, 10 mL）.
2. 6 Synthesis of UBDAs Hybrid Nanosystems

Encapsulated with AZO（Named as UB⁃
DAs）
0. 1 g of AZO and 10 mL of UBDs were injected

into a 50 mL flask and stirred for 12 h, and the ob‐
tained samples were washed with DMSO and abso‐
lute ethanol, and then dispersed in 10 mL of ultra‐
pure water, denoted as UBDAs hybrid nanosystems.
2. 7 Synthesis of UDAs Hybrid Nanomaterials

（Named as UDAs）
UDAs hybrid nanomaterials were synthesized

according to the preparation of UBDAs, except that
the Bi-PVP was not introduced in synthesis of
UB@mSiO2.
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2. 8 Characterization
A JEM-2100F low-to-high resolution transmis‐

sion electron microscope（TEM）was used to charac‐
terize different morphology at 120 kV. Fourier trans‐
form infrared（FTIR）spectra were measured with an
Avatar 370 instrument in the spectral range from
4 000 cm-1 to 500 cm-1. The upconversion lumines‐
cence spectra were acquired using a 980 nm laser
with an Edinburgh FS5 fluorescence spectrometer
with a 980 nm laser. UV-visible absorption spectra
were carried out on a Shimadzu UV-2500PC ultravio‐
let-visible spectrometer. The zeta potentials were re‐
corded by PCS analysis software on a Nano-ZS（Mal‐
vern Instruments Corporation）.
2. 9 Photothermal Performance

The photothermal effect of the UBDAs was pre‐
liminarily evaluated by exposing the corresponding
aqueous solutions with various concentrations to a
980 nm laser irradiation（1. 5 W·cm-2, 10 min）[28-29].
The temperature was recorded using a thermocouple
microprobe. To evaluate the photothermal stability,
the temperature was measured every 10 s during the
five cycles of 10 min laser irradiation and 10 min
natural cooling for the aqueous solution of the
nanoparticles（UBDAs: 400 μg·mL-1）. The photo‐
thermal conversion efficiency（η）was evaluated by
recording the temperature variation in a cycle of al‐
ternating heating and cooling process[13,30].
2. 10 Cell Experiments

HeLa（Human epithelial cervical cancer cell

line）was obtained from the Cell Bank of Type Cul‐
ture Collection of Chinese Academy of Sciences
（Shanghai, China）. The cells were cultured in high
glucose DMEM（4. 5 g·L-1 glucose） supplemented
with 10%（v/v） fetal bovine serum（FBS, Sigma-Al‐
drich, USA） and 1% penicillin-streptomycin at
37 ℃ and 5% CO2 in a humidified incubator. HeLa
cells were seeded into plates（1×104 cells per well in
96-well plates for the live/dead staining, or, 15×104
cells per well in 12-well plates for the cell survival）
and incubated for 24 h. Subsequently, the cells were
exposed to UBDAs for the following assays.

Typan blue staining was used to evaluate the
cell survival of the cells treated with the UBDAs.
HeLa cells were exposed to the culture medium
（10% FBS）containing the UBDAs at different con‐
centrations, and the cells cultured in culture me-
dium without UBDAs as the control[31-32]. After 24 h,
the medium was removed, and the typan blue solu‐
tion（0. 4 mg·mL-1） was added and cultured for 3
min, where dead cells were stained blue. The cell
survival（%） is expressed as the percentage of the
surviving cell number of treated groups in that of the
control[33-34].

The live/dead staining of cells was conducted
by using the kit（L-3224, Invitrogen, USA）following
the instruction[35]. The dyes in the kit, Calcein AM
and propidium iodide（PI）, can differentiate live
cells（green, λex= 495 nm/λem= 515 nm） from dead
cells（red, λex=535 nm/λem=635 nm）. The cells were
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Fig.1 Schematic illustration of designing UBDAs hybrid nanosystem for potential application in synergistically enhanced chemo -

photothermal therapy of tumor
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cultured in the medium（10% fetal bovine serum）
containing 400 μg·mL-1 UBDAs for 4 h. The photo‐
thermal experimental group was irradiated with 980
nm laser（1. 5 W·cm-2） for 10 min. The control
group was not treated with laser. After that, the cells
were washed with cold D-Hank’s solution. The cells
were stained with the dyes for 30 min and then ob‐
served using a fluorescence microscope.
3 Results and Discussion
3. 1 Synthesis and Characterization of UBDAs

Hybrid Nanosystem
The design of the UBDAs hybrid nanosystem

for synergistically enhanced chemo-photothermal
therapy was illustrated in Fig. 1. First, rare earth
doped up-conversion luminescence nanoparticles
NaYF4∶Yb,Tm（UCNPs）and metal bismuth nanopar‐
ticles as the core are simultaneously coated in a mes‐
oporous silica shell layer to form a mesoporous coated

core-shell hybrid nanosystem UB@mSiO2 with ami‐
no functionalization on the surface, and then load‐
ing DOX into mesoporous silica pores. Finally, the
drug was encapsulated with AZO compound to ob‐
tain the final upconversion-bismuth hybrid nanosys‐
tems UBDAs. As shown in Fig. 2, the morphology
and structure of the initial UCNPs to the final UB‐
DAs nanosystem were characterized by transmission
electron microscopy（TEM）. As displayed in Fig.
2（a）and 2（b）, the UCNPs show good monodisper‐
sity with an average diameter of around 38 nm and
Bi-PVP shows a very small size（below 10 nm）, re‐
spectively.

Fig. 2（c） displays that the SiO2 mesoporous
shell successfully coated on the surface of UCNPs
and Bi-PVP, leading to the formation of UB@mSiO2
with the average size of approximately 55 nm. And
from the high-resolution transmission electron micros‐
copy（HR-TEM）image of UB@mSiO2 in Fig. 2（e）, it

（a）

d（101）=0. 37 nm

d（024）=0. 16 nm d（110）=0. 295 nm

10 nm
Bi Si

100 nm
Tm N

100 nm

50 nm

50 nm 10 nm 100 nm

（b） （c）

（d） （e）

（f）

（g）

Fig.2 Transmission electron microscope（TEM）images of NaYF4∶Yb，Tm（a），Bi-PVP（b），UB@mSiO2（c），and UBDAs（d）.
（e）Corresponding high-resolution TEM（HR-TEM）image of UB@mSiO2.（f）-（g）HAADF-STEM-EDS mapping image of
UBDAs.
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can be observed that the lattice fringe spacing of
0. 295 nm is in agreement with the d-spacing of
（110）lattice plane of hexagonal-system NaYF4（JCP‐
DS 16-0334）, and 0. 37 nm and 0. 16 nm are attrib‐
uted to（101）and（024）of Bi（JCPDS 85-1329）, re‐
spectively. It can be deduced that the UCNPs and
Bi exist in the UB@mSiO2 nanoparticles. From the
TEM image（Fig. 2（d））and HR-TEM image of UB‐
DAs（Fig. 2（f））, it can be observed that there is no
obvious increase in particle size of UBDAs after
loading with DOX and AZO. From Fig. 2（g）, the
corresponding elements（Bi, Si, Tm, and N） in the
hybrid nanosystem by elemental mapping image sug‐
gest that successful synthesis of the UBDAs assem ‐
blies by this facile method.

Fig. 3（a）shows the zeta potentials of Bi ‐ PVP,
UCNPs@mSiO2, UB@mSiO2, UCNPs@mSiO2NH2,
UBDs, and UBDAs nanosystem, respectively. In
comparison with the zeta potentials of Bi-PVP and
UCNPs@mSiO2 being +38. 2 mV and -20. 6 mV, re‐
spectively, the UB@mSiO2 displays -12. 4 mV, indi‐
cating that the Bi-PVP was successfully encapsulated

in mesoporous silica. After APTES modification, the
zeta potential of UB@mSiO2-NH2 is +45. 1 mV,
which shows that the —NH2 group was successfully
attached to the UB@mSiO2. The zeta potential of
UBDs increases to +47. 2 mV, suggesting the suc‐
cessful loading of DOX in UBDs[36]. Since AZO is
negatively charged, leading to the zeta potential of
UBDAs to be reduced to +23. 2 mV, it suggests the
successful installing of AZO on UBDs and the forma‐
tion of UBDAs nanosystem.

Fig. 3（b） shows the FTIR spectra of UCNPs,
Bi-PVP, UB@mSiO2, UBDs, and UBDAs nanosys‐
tem. In the spectrum of UCNPs, the characteristic
peaks at 2 926 cm-1 and 2 855 cm-1 can be ascribed
to the symmetric and asymmetric stretching vibra‐
tions of —CH2 in oleic acid. The two peaks at 1 558
cm-1 and 1 465 cm-1 are due to the symmetric and
asymmetric stretches of —COOH in oleic acid. For
the curve of UB@mSiO2, the bands at 1 080 cm-1 and
800 cm-1 are due to the asymmetric and symmetric
vibrations of Si—O—Si, indicating the successful
wrapping of mesoporous silica. In the spectrum of
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Fig.3 （a）The zeta potentials of Bi-PVP，UCNPs@mSiO2，UB@mSiO2，UB@mSiO2-NH2，UBDs，and UBDAs dispersed in wa‐
ter（200 μg·mL-1）.（b）FTIR spectra of UCNPs，Bi-PVP，UB@mSiO2，UBDs，and UBDAs.（c）UV-visible absorption spec‐
tra of UB@mSiO2，UBDs，and UBDAs.（d）Upconversion luminescence spectra of UCNPs，UB@mSiO2，UBDs，and UB‐
DAs dispersed in water（200 μg·mL-1）upon excitation of 980 nm.
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UBDs, the peak at 1 599 cm-1 is attributed to the
stretching vibration of —N—H in the amino-modi‐
fied silica shell and the amino group of DOX. After
AZO was installed, the new peak at 690 cm-1 can be
attributed to the vibration of benzene ring in the
spectrum of UBDAs. Thus, the results above further
suggest the formation of UBDAs nanosystem. In ad‐
dition, Fig. S1 and Fig. S2 show the XRD patterns
of Bi-PVP and UBDAs nanosystem. In the pattern of
UBDAs，the diffraction peak at a 2θ value of 27. 2°
is due to the（012）plane of Bi（JCPDS 85-1329）,
and the diffraction peaks attributed tohexagonal
phase of NaYF4（JCPDS16-0334）can be observed as
well. The results further indicate that the final nano‐
composites are composed of UCNPs and Bi-PVP.

Fig. 3（d）shows the upconversion emission
spectra of UCNPs, UB@mSiO2, UBDs, and UBDAs
under 980 nm excitation, respectively. The emission
peaks located at 291 nm（1I6→3H6）, 345 nm（1I6→
3F4）, 362 nm（1D2→3H6）, 450 nm（1D2→3F4）, 479 nm
（1G4→3H6）, and 648 nm（1G4→3F4） belong to the
characteristic emission of Tm3+ ion. A significant de‐
crease in the upconversion luminescence intensity
can be observed in UB@mSiO2 relative to that of UC‐
NPs. It is worth noting that the red emission intensity
at 648 nm of UBDs remains almost unchanged, while
the emission intensities at 450 nm and 479 nm are
reduced in comparison with those of UB@mSiO2. Be‐
cause of overlap between the green emission of up‐
conversion luminescence and the absorption spec‐
trum of DOX（absorption band with maximum at
around 480 nm）, the Förster resonance energy trans‐
fer（FRET）occurs between UB@mSiO2 and DOX, re‐
sulting in green emission of UBDs which was partially
diminished after loading of DOX. In addition, the
emission peaks at 345 nm and 362 nm of UBDAs,
compared with those of UBDs, decrease significantly
after AZO is encapsulated. This is because the ab‐
sorption spectrum of AZO overlaps with the upcon‐
version luminescence spectrum of UBDs in the ultra‐
violet region（see Fig. 3（c）and 3（d））, leading to
FRET between UBDs and AZO. Therefore, the re‐
sults demonstrate the successful coating of AZO.

3. 2 Photothermal Properties
The UBDAs hybrid nanosystem exhibits a

broad UV-Vis-NIR absorbance, as shown in Fig. S3,
which encourages us to study the potential photother‐
mal property under NIR laser irradiation. The hy‐
brid nanosystem was dispersed in water at different
concentrations（50, 100, 200, 400 μg·mL-1）, and
pure water was used as the control. As shown in
Fig. 4（a）, under a 980 nm laser（1. 5 W·cm-2, 10
min）irradiation the temperatures of UBDAs disper‐
sion raise rapidly with the increase of concentration.
The temperature of dispersion at concentration of
200 μg·mL-1 and 400 μg·mL-1 increase to 44 ℃
and 52 ℃, respectively, after irradiation for 10 min.
However, the temperature of pure water increases by
only 3 ℃ after 10 min irradiation. Besides the con‐
centration-dependent photothermal effect, the UB‐
DAs dispersion shows a power-dependent heating ef‐
fect, and there is a large upward trend with the in‐
crease of power densities（0. 50, 1. 0, 1. 5 W·cm-2）,
as shown in Fig S4. The above results indicate that
the UBDAs hybrid nanosystem can efficiently con‐
vert the NIR light into thermal energy[37]. In addition,
the photothermal conversion efficiency（η） is deter‐
mined to be 28. 5% according to the data obtained
from Fig. 4（c）and 4（d）by using the reported me ‐
thod[37-39]. The efficiency value is slightly higher in
comparison with that of UCNPs@Bi@SiO2 nanoparti‐
cles（28. 4%）[40]. To test the photothermal stability,
the temperature change of UBDAs dispersion was
recorded as a function of time during the five on/off
cycles of laser irradiation. As shown in Fig. 4（b）,
the temperature increment of UBDAs almost main‐
tains unchanged during the heating process after
five cycles of irradiation, and the temperature of
UBDAs after fifth irradiation is still around 97% of
that of the first irradiation, indicating that the UB‐
DAs has good photothermal stability. Furthermore,
the infrared thermal images of different concentra‐
tions（50, 100, 200, 400 μg·mL-1）of UBDAs dis‐
persion and pure water are displayed in Fig. 4（e）
at the time points of 0, 2, 4, 6, 8, 10 min upon 980
nm laser irradiation（1. 5 W·cm-2）. The UBDAs
hybrid nanosystem exhibits notable time-dependent
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and concentration-dependent thermal effects. Since
the death of cancer cells can be induced at tempera‐
ture higher than 42 ℃, the UBDAs hybrid nanosystem
is expected to be a potential candidate for PTT of tumor.
3. 3 Drug Release

To study the drug release of this nanosystem in
response to NIR light, we first tested the absorbance
spectra of DOX solution with different concentra‐
tions[41-42]. And the absorbance intensity（at 480 nm）
as a function of DOX concentration was shown in

Fig. 5（a）, from which the corresponding standard
absorption curve can be simulated and established.
Since the photomechanical AZO can create a trans‐
formation from trans-isomer into cis-isomer under
UV light excitation[17]（Fig. S5）, DOX could be re‐
leased from UBDAs under the upconverted UV light
that emitted by UCNPs. Therefore, a photo-respon‐
sive controlled DOX release can be achieved from
the continuous rotation-inversion movement of AZO
depending on the 980 nm laser irradiation on the
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Fig.4 （a）Temperature curves of UBDAs suspensions at various concentrations（50，100，200，400 μg·mL-1）under 980 nm la‐
ser（1.5 W·cm-2）irradiation for 10 min.（b）Temperature curves of the UBDAs（400 μg·mL-1）over five cycles of laser on/
off operation.（c）Photothermal circulation curves of the UBDAs suspensions.（d）Linear time data versus -lnθ obtained
from the cooling period of panel Fig.4（c）.（e）Infrared thermal images of different concentrations（50，100，200，400 μg·
mL-1）of UBDAs hybrid nanosystem and pure water at the time points of 0，2，4，6，8，10 min upon 980 nm laser irradia‐
tion（1.5 W·cm-2）.
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Fig.5 （a）DOX standard curve by testing the absorbance（at 480 nm）of DOX solution with different concentrations（6.25，12.5，
25.0，50.0，100 μg·mL-1）.（b）Stimuli-responsive DOX release of UBDAs，UDAs，and UBDs in PBS for 72 h after 980
nm laser（1.5 W·cm-2）irradiation for 10 min.
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nanosystem.
Subsequently, the DOX release behaviors of

UBDAs, UDAs, and UBDs were further investigated
under 980 nm laser irradiation（Fig. 5（b））. From
the synthesis process, it is known that UDAs has no
Bi being introduced and UBDs has no AZO for
encapsulation. As displayed in Fig. 5（b）, it can be
observed that the release rate of final UBDAs is
faster than those of UDAs and UBDs, implying that
the photothermal effect of Bi and the cis ‐ trans
reversal of AZO structure could facilitate the DOX
release, respectively. The release of DOX could be
triggered by NIR light via the trans-isomer of AZO.
The upconverted UV light emitted by the UCNPs
creates a continuous rotation-inversion movement
and the back and forth wagging motion of AZO
molecules, which acts as a molecular impeller that
propels the NIR-triggered release of DOX. Addi‐
tionally, under 980 nm NIR laser stimuli, the ac‐
celerating release of DOX from UBDs（no loading
of AZO）also occurs in the PBS solution. This is
mainly attributed to the rapid raise of local temper‐
ature that induced by the photothermal effect un‐
der the laser irradiation, which can enhance the
thermal vibration and weaken the interaction be‐
tween DOX and nanosystem, resulting in the accel‐
erated DOX release.
3. 4 In Vitro Cytotoxic Effect Against HeLa

Cells
Based on the excellent photothermal effect and

controllable drug release of UBDAs nanosystem un‐
der 980 nm laser irradiation, the nanosystem is con‐
sidered to be used in the toxicity study of HeLa cells
and the effect of photothermal therapy and chemo‐
therapy in killing HeLa cells[43]. Fig. 6 and Fig. S6
show the cell viabilities after the HeLa cells were co-

incubated with different concentrations of UBDAs
and UB@mSiO2 for 24 h, and HeLa cells incubated
with PBS are used as a blank control group. It can
be observed that even at the highest concentration of
UBDAs（400 μg·mL-1）, the cell survival remains
above 95%. This indicates that the nanosystem has
low or no cytotoxicity to HeLa cells in the dosages

range studied. Thus, the good biocompatibility and
photothermal effect as well as the controllable drug
release make the nanosystem potentially useful in
synergistic photothermal therapy and chemotherapy
for cancer cells in biomedical application.

Encouraged by the high biocompatibility, out‐
standing photothermal conversion capacity and con‐
trollable drug release of the UBDAs nanosystem, the
antitumor performance of the nanosystem was evalu‐
ated by the live/dead cell staining assay. It is evi‐
dent from Fig. 7 that UBDAs（400 μg·mL-1）do not
affect the viability of the cells in the high concentra‐
tion because all of the HeLa cells show bright green
fluorescence. When HeLa cells were incubated with
UBDAs as well as with NIR laser irradiation, nearly
all cells were dead and showed red fluorescence,
which effectively illustrates that the good antitumor
performance of UBDAs upon 980 nm laser irradia‐
tion. The loaded DOX could be released from the
UBDAs nanosystem by NIR-triggered release, in
which the AZO can create a transformation from
trans-isomer into cis-isomer under UV light that gen‐
erated by the upconversion nanoparticles of the
nanosystem. Simultaneously, local temperature raise
rapidly that induced by the photothermal effect un‐
der the NIR laser irradiation, resulting in the accel‐
erated DOX release. Therefore, the designed UB‐
DAs can be used as the promising single NIR-light
stimuli-responsive drug release and photothermal
therapy.
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Fig.6 HeLa cells survival after culturing in the medium con‐
taining UBDAs with different concentrations（0，25，
50，100，200，400 μg·mL-1）for 24 h
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4 Conclusions
In summary, a new upconversion-bismuth hy‐

brid nanosystem UBDAs was successfully developed
through a mild method, which can be expected to
achieve for single NIR-light stimuli-responsive drug
release and photothermal therapy. The upconverted
UV light emitted by the UCNPs creates a continuous
rotation-inversion movement that propels the NIR-

triggered release of DOX. More importantly, the UB‐

DAs exhibit extremely high biological safety and ef‐
fective chemo-photothermal therapy in vitro. There‐
fore, this work opens an opportunity of exploring the
new type of hybrid nanosystem for efficiently syner‐
gistic tumor therapy.

Supplementary Information and Response Letter are
available for this paper at: http://cjl. lightpublishing.
cn/thesisDetails#10.37188/CJL. 20220142.
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