文章编号:1000-7032(2019)06-0766-07

含添加剂的二步溶液法制备钙钛矿太阳能电池

郑海松,魏爱香*,刘 俊,肖志明,招 瑜 (广东工业大学材料与能源学院,广东广州 510006)

摘要:采用含二甲基亚砜(DMSO)添加剂的二步溶液法制备高质量 CH₃NH₃PbI₃ 吸收层,并制备了结构为 FTO/TiO₂ 致密层/TiO₂ 介孔层/CH₃NH₃PbI₃ 吸收层/碳电极的碳基无空穴传输层的钙钛矿太阳能电池(PSCs)。 研究了 PbI₂ 薄膜分别在相同浓度的 MAI/IPA 溶液中浸泡不同时间,以及在不同浓度的 MAI/IPA 溶液中浸泡相 同时间对 CH₃NH₃PbI₃ 薄膜的形貌、结构以及对 PSCs 光伏性能的影响规律。结果表明,在 PbI₂/DMF 溶液中添 加 DMSO 之后使制备的 PbI₂ 薄膜呈多孔疏松状态,有利于 MAI/IPA 溶液渗入 PbI₂ 薄膜内部,缩短 PbI₂ 完全转 换成 CH₃NH₃PbI₃ 的时间;当浸泡时间为 40 min 时,电池的光伏性能最佳,其开路电压为 0.82 V,短路电流密度 为 21.21 mA/cm²,填充因子为 0.49,光电转化效率为 8.61%。但是当浸泡时间过长,CH₃NH₃PbI₃ 薄膜表面会出 现大晶粒,导致电池的光伏性能变差。而在相同的浸泡时间下,MAI/IPA 溶液的浓度则会显著影响 PbI₂ 转化成 CH₃NH₃PbI₃ 的速度,MAI/IPA 溶液的浓度越高,PbI₂ 完全转化成 CH₃NH₃PbI₃ 的速度越快。

关 键 词:钙钛矿太阳能电池;二步溶液法;浸泡时间;浸泡浓度;光伏性能 **中图分类号:**TM914.4 **文献标识码:** A **DOI**: 10.3788/fgxb20194006.0766

Perovskite Solar Cells Prepared by Two-step Solution Method with Additive

ZHENG Hai-song, WEI Ai-xiang*, LIU Jun, XIAO Zhi-ming, ZHAO Yu

(School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China) * Corresponding Author, E-mail: weiax@gdut.edu.cn

Abstract: In this paper, a two-step solution method including dimethyl sulfoxide(DMSO) as additive is used to prepare a high-quality $CH_3NH_3PbI_3$ absorb layer for carbon-based hole conductor-free perovskite solar cells(PSCs), which have the structure consisting of FTO glass/compact TiO₂/mesoporous TiO₂/ $CH_3NH_3PbI_3$ /carbon electrodes. The effects of dipping time and dipping concentration on the photovoltaic performance of PSCs are studied. Introducing some DMSO in the PbI₂/DMF solutions results in formation of porous and loose PbI₂ films, which shortens the time required for the complete conversion of PbI₂ to perovskite. When the dipping time is 40 min, the PSCs have the best photovoltaic performance with the open circuit voltage of 0.82 V, the short-circuit current density of 21.21 mA/cm², the fill factor of 0.49, and the photoelectric conversion efficiency of 8.61%. However, when the dipping time is too long, the large grains will appear on the surface of the $CH_3NH_3PbI_3$ absorb layer, resulting in the poor photovoltaic performance of PSCs. In addition, the concentration of MAI/IPA solution will significantly affect the rate of the conversion of PbI₂ to $CH_3NH_3PbI_3$. The higher the concentration of MAI/IPA solution is, the faster the rate of the conversion of PbI₂ to $CH_3NH_3PbI_3$ to $CH_3NH_3PbI_3$ is.

Key words: perovskite solar cell; two-step solution method; dipping time; dipping concentration; photovoltaic performance

收稿日期: 2018-06-23;修订日期: 2018-10-18

基金项目:广东省科技计划项目(2016A010104020)资助

Supported by Science and Technology Program of Guangdong Province(2016A010104020)

1引言

有机/无机卤化物钙钛矿太阳能电池(PSCs) 由于其光电转换效率(PCE)在短短几年内从 3.8%^[1]迅速提高至22.1%^[2]而备受关注。然 而,传统结构的 PSCs 也面临着一些问题,例如真 空蒸发技术制备金电极和昂贵的小分子材料 spiro-OMeTAD 作为空穴传输层均会导致电池的制 备成本过高,阻碍了未来 PSCs 的商业化应用。因 此,降低成本和提高稳定性是当务之急。一方面, 碳材料来源广泛且价格便宜,如石墨和石墨烯具 有良好的导电性且易于制备;另一方面,钙钛矿材 料本身既可以被用作光吸收层,也可以作为空穴 传输层^[38],因此,基于碳电极的无空穴传输层的 钙钛矿太阳能电池应运而生。

在一系列用于制备高质量钙钛矿吸收层的方 法中,二步溶液法简单且成本低,二步溶液法不仅 比一步溶液法更容易控制钙钛矿的结晶过程,而 且与真空蒸镀和气相辅助溶液工艺制备方法相 比,不需要用到昂贵的实验设备,可大幅度降低成 本^[9-15]。然而,用传统的碘化铅/N,N-二甲基甲酰胺 (PbI₂/DMF)溶液制备的 PbI₂ 薄膜浸泡在甲基碘化 胺/异丙醇(MAL/IPA)溶液中,通常需要较长的时间 才能把 PbI₂ 完全转变为钙钛矿(CH₃NH₃PbI₃)^[16], 这会使钙钛矿吸收层表面形成较大的钙钛矿晶 粒^[17],导致钙钛矿吸收层与碳电极之间接触不 良。同时,一些残留在钙钛矿薄膜中的 PbI₂ 会降 低钙钛矿太阳能电池的稳定性^[18]。

本文使用含二甲基亚砜(DMSO)添加剂的二 步溶液法制备高质量 CH₃NH₃PbI₃ 吸收层,并制 备结构为 FTO/TiO₂ 致密层/TiO₂ 介孔层/ CH₃NH₃PbI₃ 吸收层/碳电极的钙钛矿太阳能电 池。研究浸泡时间和浸泡浓度对 CH₃NH₃PbI₃ 薄 膜以及 PSCs 的光伏性能的影响规律。我们先前 的研究工作已表明^[19]:采用浓度为1.0 mol/L的 PbI₂/DMF 溶液制备的 PbI₂ 薄膜在 0.063 mol/L 的 MAI/IPA 溶液中需浸泡 3.5 h 后,PbI₂ 才能完 全转化为 CH₃NH₃PbI₃, 延长浸泡时间会在 CH₃NH₃PbI₃ 表面形成个别较大的晶粒,导致钙钛 矿/碳电极界面接触不良,从而导致 PSCs 的填充 因子较低。为了获得高质量的钙钛矿层,提高 PSCs 的填充因子和光电转换效率,本文使用 DMSO 和 DMF 的混合溶剂代替纯 DMF 溶剂配制 PbI₂前驱溶液用于制备 PbI₂薄膜,由于加入添加剂 DMSO 之后,使 PbI₂薄膜呈多孔疏松状态,从 而使 PbI₂完全转化为 CH₃NH₃PbI₃的时间缩短为 30 min,且改善了 CH₃NH₃PbI₃/碳电极的接触,提 高了 PSCs 的填充因子和转换效率。

2 实 验

2.1 TiO₂ 致密层和介孔层的制备

首先把掺 F 的 SnO₂ 透明导电玻璃(FTO)依 次放入丙酮和无水乙醇中超声清洗 25 min,然后 用氮气枪吹干。将 1 g 的 75% 双(乙酰丙酮基) 二异丙基钛酸酯与 10.3 g 正丁醇充分搅拌混合, 形成 TiO₂ 致密层前驱液。在 500 r/min、3 s,3 000 r/min、30 s 的条件下将前驱液旋涂在预热好的 FTO上,然后 100 ℃加热 15 min,再经过 500 ℃退 火形成 TiO₂ 致密层。以 18NR-T 与无水乙醇质量 比为 1:4的比例稀释 18NR-T,形成 TiO₂ 介孔层旋 涂浆料。在 5 000 r/min、30 s 的条件下将浆料旋 涂在预热好的致密层上,然后 100 ℃加热 15 min, 最后经过 500 ℃退火 15 min 形成 TiO₂ 介孔层。

2.2 钙钛矿吸收层的制备

将461 mg的PbI₂粉末溶于200 μL DMSO 与 800 μL DMF 混合溶剂中,搅拌 5 min,然后放到保 湿柜里静置2.0 h,待 PbI₂粉末完全溶解即可形 成浓度为1.0 mol/L 的 PbI₂溶液。在500 r/min、 3 s,3 500 r/min、30 s 的条件下将 PbI₂溶液旋涂 在预热好的介孔层上,然后100 ℃加热40 min 后 得到 PbI₂ 薄膜。为了研究不同浸泡时间和不同 浸泡浓度对钙钛矿层的形貌和结构以及 PSCs 的 光伏性能的影响规律,设计了两组实验。

A 组:将 100 mg 的 MAI 粉末溶于 10 mL 的 IPA 中,搅拌 30 min,待 MAI 粉末完全溶解即可形 成 0.063 mol/L 的 MAI/IPA 溶液。将 PbI₂ 薄膜 置于 MAI/IPA 溶液中分别浸泡 8,12,20,30,40, 60,90 min。然后用异丙醇清洗样品表面,去除多余 的 MAI。最后 100 ℃加热 40 min,得到 CH₃NH₃PbI₃ 吸收层。

B 组:分别将 70,100,130 mg 的 MAI 粉末溶 于 10 mL 的 IPA 中,搅拌 30 min,待 MAI 粉末完 全溶解即可形成浓度分别为 0.044,0.063,0.082 mol/L 的 MAI/IPA 溶液。将 PbI₂ 薄膜分别置于 不同浓度的 MAI/IPA 溶液中浸泡 40 min。然后 用异丙醇清洗样品表面,去除多余的 MAI。最后 100 ℃加热 40 min,得到 CH₃NH₃PbI₃ 吸收层。

采用场发射扫描电子显微镜(FE-SEM, SU8010)和X射线衍射仪(XRD,MAX-Ultima IV) 对 TiO₂ 致密层、TiO₂介孔层、PbI₂薄膜和 CH₃NH₃PbI₃吸收层的形貌和结构进行表征。 XRD 的测试条件为:CuKα射线, $\lambda = 0.1542$ nm, 扫描范围 10°~60°,扫描速度为 6(°)/min。

2.3 钙钛矿太阳能电池的制备和光伏性能测试

第一步,在清洗干净的 FTO 上旋涂制备 TiO, 致密层;第二步,在致密层上旋涂制备 TiO, 介孔 层;第三步,在介孔层上制备 PbL, 薄膜;第四步, 将 PbI, 薄膜浸泡到 MAI/IPA 溶液中生成 CH_aNH_aPbI_a层;第五步,在吸收层上刮涂一层碳 浆料,在100 ℃干燥30 min 后得到结构为FTO/ TiO, 致密层/TiO, 介孔层/CH₃NH₃PbI₃吸收层/ 碳电极的钙钛矿太阳能电池。上述实验过程全部 在空气中进行。采用 Keithley 2400 数字源表测试 电池的 J-V 特性曲线,所用的光源为 500 W 的氙 灯(AM-1.5),光功率密度调整和校准为100 mW/ cm²,电池的有效受光面积为0.16 cm²:并采用太 阳能电池外量子效率测试仪进行光谱响应特性分 析:采用电化学工作站进行电化学阻抗谱分析:采 用紫外可见分光光度计进行吸光度和透过率 分析。

3 结果与讨论

3.1 浸泡时间对钙钛矿层结构和形貌的影响

图1是在不同浸泡时间下制备的 CH₃NH₃PbI₃ 吸收层的 XRD 衍射图。由图 1 可知,当 PbI。薄 膜在浓度为0.063 mol/L的 MAI/IPA 溶液中的浸 泡时间小于 30 min 时,虽然大部分 PbI,已经转化 为 CH₃NH₃PbI₃,但是在 $2\theta = 12.67$ °处出现微弱的 衍射峰,该峰对应于 PbI,的(001)晶面衍射峰 (JCPDS No. 07-0235),说明仍有少量 PbI, 残留。 位于 14.04°、19.94°、23.46°、24.48°、28.32°、 31.86°、34.92°、40.52°和43.04°处的 XRD 衍射 峰分别对应 CH₃NH₃PbI₃ 的(110)、(112)、 (211), (202), (220), (310), (312), (224) 和 (314) 晶面的衍射峰^[20]。浸泡时间为 30 min 时,PbI2的衍射峰消失,表明PbI2已经完全转化 为CH₃NH₃PbI₃。当浸泡时间为40 min 时,钙钛 矿的特征峰最强,说明此时钙钛矿的结晶性最 好。结果表明浸泡时间会影响 CH₃NH₃PbI₃ 吸

收层的相纯度。

图 1 不同浸泡时间制备的 CH₃NH₃PbI₃ 吸收层的 XRD 衍射图

Fig. 1 X-ray diffraction pattern of the CH₃NH₃PbI₃ layer prepared at different dipping times

图 2(a) 和(b) 分别是采用纯 DMF 溶剂和 DMSO/DMF 混合溶剂制备的 PbI, 薄膜的 SEM 图像,可以看出加入 DMSO 之后 PbI, 薄膜孔隙 率增加,表面更加疏松,有利于 MAI/IPA 溶液渗 入 PbI, 薄膜内部, 缩短 PbI, 完全转换成 CH₃NH₃PbI₃的时间。Wu 等^[21]研究了 PbI₂ 与溶 剂分子 DMF 和 DMSO 之间的配位关系,发现 DMF-PbI, 形成络合物时, Pb-O 键长为 0.243 1 nm, Pb²⁺与 DMF 溶剂的配位比为 1:1; DMSO-PbI, 形成络合物时, Pb-O 键长为 0.238 6 nm, Pb²⁺与 DMSO 溶剂的配位比为 1:2。表明 DMSO 与 PbI, 的配位能力比 DMF 与 PbI, 的配位能力 强。因此,采用 PbL,/DMF 溶液制备 PbL,薄膜 时,由于 DMF-PbI, 络合物中 Pb-O 键比较弱, 旋涂过程中溶剂容易挥发,导致 PbI2 在退火之 前就会在 TiO, 介孔层上结晶。DMSO-PbI, 络合 物的沸点较高以及 DMSO 和 Pb2+之间较强的相 互作用,能减缓溶剂在旋涂过程中的挥发。高 温下退火时,残余的 DMSO 溶剂分子将逐渐挥 发,溶剂分子在退火过程进一步释放,导致 PbI2 薄膜呈多孔疏松结构,如图2(b)所示。图2(c)~ (i)分别为 PbI2 薄膜在浓度为 0.063 mol/L 的 MAI/IPA 溶液中浸泡 8,12,20,30,40,60,90 min 得到的 CH₃NH₃PbI, 薄膜的 SEM 图像。当浸泡时 间为8~40 min 时,钙钛矿薄膜的表面呈现立方 体形状的晶粒,钙钛矿层由尺寸均匀的晶粒组成, 表面光滑。然而,当浸泡时间为60 min 和90 min 时,在钙钛矿层的表面上会形成一些比较大的钙 钛矿晶粒,从而出现粗糙的钙钛矿层。

- 图 2 (a,b)采用纯 DMF 溶剂和 DMSO 与 DMF 混合溶剂制备的 PbI₂ 薄膜的 SEM 像; (c~i)不同浸泡时间得到的 CH₃NH₃PbI₃ 的 SEM 像。
- Fig. 2 (a, b) SEM images of PbI_2 films prepared using pure solvent of DMF and mixed solvent of DMF with DMSO, respectively. (c - i) SEM images of $CH_3NH_3PbI_3$ layer prepared at different dipping times.

3.2 浸泡浓度对钙钛矿层结构和形貌的影响

图 3 是将 PbI₂ 薄膜分别浸入浓度为 0.044, 0.063,0.082 mol/L 的 MAI/IPA 溶液中浸泡 40 min 得到的 CH₃NH₃PbI₃ 吸收层的 XRD 衍射图。 随着 MAI/IPA 溶液浓度的增加,PbI₂ 更快地转化 为 CH₃NH₃PbI₃。由图 3 可看出,PbI₂ 薄膜在浓度 为 0.044 mol/L 的 MAI/IPA 溶液中浸泡 40 min 后,仍有 PbI₂ 残留在钙钛矿层中。而 PbI₂ 薄膜在 0.063 mol/L 和 0.082 mol/L 的 MAI/IPA 溶液里

- 图 3 PbI₂ 薄膜在不同浓度的 MAL/IPA 溶液中浸泡 40 min 得到的 CH₃NH₃PbI₃ 的 XRD 图
- Fig. 3 X-ray diffraction pattern of the $CH_3NH_3PbI_3$ prepared by dipping PbI_2 films in MAI/IPA solution with different concentrations

浸泡 40 min 后均可完全转化为钙钛矿。结果表明,在增大 MAL/IPA 溶液的浓度后,PbI₂ 转化为 CH₃NH₃PbI₃ 的速度明显加快。

- 图 4 PbI₂ 薄膜在不同浓度的 MAL/IPA 溶液中浸泡 40 min 得到的 CH₃NH₃PbI₃ 的 SEM 图像
- Fig. 4 SEM images of $\rm CH_3NH_3PbI_3$ layer prepared by dipping $\rm PbI_2$ films in MAI/IPA solution with different concentration

图 4(a)、(b)、(c)是通过将 PbI₂ 薄膜分别浸入 0.044,0.063,0.082 mol/L 的 MAI/IPA 溶液中浸泡 40 min 得到的 CH₃NH₃PbI₃ 的 SEM 图像。在 0.044, 0.063 mol/L 的 MAI/IPA 溶液中浸泡 40 min 得到的 钙钛矿薄膜表面非常平整,由尺寸均匀的晶粒组成。 但 PbI₂ 薄膜在浓度为 0.082 mol/L 的 MAI/IPA 溶液 中浸泡 40 min 后生成的钙钛矿层表面则出现了少数 大晶粒。结合图 3 和图 4 可知,在浓度为 0.082 mol/ L 的 MAI/IPA 溶液里浸泡 40 min 后已经属于过度 浸泡,其结晶性反而降低。

3.3 钙钛矿太阳能电池的光伏性能及阻抗谱 分析

在 TiO₂ 致密层、介孔层和碳电极制备工艺相同的条件下,以 PbI,薄膜在浓度 0.063 mol/L 的 MAI/

IPA 溶液中分别浸泡 20,30,40,60,90 min 后得到的 钙钛矿层作为吸收层,制备钙钛矿太阳能电池,这5 个电池编号分别为 SC1A、SC2A、SC3A、SC4A 和 SC5A。以 PbI₂ 薄膜分别浸泡在浓度为 0.044, 0.063,0.082 mol/L 的 MAI/IPA 溶液中 40 min 得到 的 CH₃NH₃PbI₃ 层作为吸收层,制备钙钛矿太阳能电池,这3 个电池编号分别为 SC1B、SC2B 和 SC3B。图 5(a)、(b)为两组电池的 *J-V* 特性曲线。图 5(c)为电池 SC2B 的外量子效率特性曲线(IPCE)。图 5(d)为 A 组电池的电化学阻抗谱(EIS)。图 5(e)为电池 SC1B 和 SC2B 的紫外可见吸收和透射光谱。图 5(f)为电池 SC2B 的截面 SEM 图,由此可得到 TiO₂ 致密层厚度约为 70 nm,介孔层厚 度约为 500 nm,钙钛矿层厚度约为 550 nm。

图 5 (a,b)钙钛矿太阳能电池的 J-V 特性曲线;(c)电池 SC2B 的外量子效率特性曲线;(d)钙钛矿电池的电化学阻抗 谱;(e)电池 SC1B 和 SC2B 的紫外可见吸收和透射光谱;(f)电池 SC2B 的截面 SEM 图。

Fig. 5 (a, b) *J-V* curves of PSCs. (c) IPCE spectra of SC2B. (d) EIS spectra of PSCs. (e) UV-vis absorption and transmittance spectra of the SC1B and SC2B. (f) Cross-sectional SEM image of SC2B.

表1为根据图5(a)、(b)得到的两组钙钛矿太阳能电池的光伏特性参数。从图5(a)和表1可看出,随着PbI₂薄膜在MAL/IPA溶液中浸泡反应时间的延长,PbI₂含量相应减少,钙钛矿层的结晶性逐渐增强,电池的光伏性能逐渐提高。A组电池中,当浸泡时间为40min时制备的电池(SC3A)达到了最佳的光伏性能,即开路电压(V_{oc})达到0.82V,短路电流密度(J_{sc})达到21.21mA/cm²,填充因子(FF)达到0.49,光电转化效率(PCE)提高至8.61%,且在整个可见光区的光子-电子的转换效

率接近 70%。但是当继续延长浸泡时间到 60 min 以上时,电池的光伏性能反而有所下降,主要原因 是过度浸泡后钙钛矿层表面出现比较大的钙钛矿 晶粒,使得表面平整性下降,导致钙钛矿层与碳电 极的接触较差,从而使填充因子和短路电流密度减 小,最终导致光电转换效率降低。从图 5(d)可看 出,A 组电池中,SC3A 具有最低的串联电阻 R_s和 电荷传输阻抗 R_{et},与其具有最大的填充因子和短 路电流密度的实验结果相一致^[22]。从图 5(b)和 表1 可看出,B 组电池中,在相同的浸泡时间下,电 池 SC1B 由于仍有一部分 PbI₂ 残留在钙钛矿层中, 阻碍载流子的迁移,导致其短路电流密度较低;此 外,从图 5(e)可看出,SC2B 的钙钛矿层在可见光 范围内对光的吸收能力比 SC1B 强。SC3B 由于过 度浸泡,钙钛矿层与碳电极之间的接触不良,二者 之间较大的串联电阻导致短路电流密度和填充因 子减小。所以电池 SC1B 和 SC3B 的光电转化效率 均没有电池 SC2B 的转换效率高。

表 1	钙钛矿太阳能电池的制备上艺条件和光伏特性参数	

	Parameters of preparation process			Photovoltaic parameters		
Sample No	Dipping concentration/	dipping time/	$V_{ m oc}$	$J_{ m sc}$ /	FF	PCE/
	$(mol \cdot L^{-1})$	min	V	$(mA \cdot cm^{-2})$	гг	%
SC1A	0.063	20	0.81	16.77	0.47	6.35
SC2A	0.063	30	0.83	16.93	0.49	6.87
SC3A	0.063	40	0.82	21.21	0.49	8.61
SC4A	0.063	60	0.84	19.38	0.42	6.79
SC5A	0.063	90	0.77	14.03	0.39	4.22
SC1B	0.044	40	0.80	16.96	0.51	6.90
SC2B	0.063	40	0.82	21.21	0.49	8.61
SC3B	0.082	40	0.79	14.88	0.41	4.87

Tab. 1 Parameters of preparation process and photovoltaic characteristics of PSCs

目前基于碳电极的无空穴传输层的钙钛矿太 阳能电池的最高效率已达到 14.5%^[23]。从表 1 可知,本文制备的电池与目前最高效率的相同结 构的电池相比,主要是填充因子较低,导致光电转 换效率较低。填充因子低的主要原因是钙钛矿/ 碳电极界面的接触差和串联电阻较大,提高电池 的填充因子和光电转换效率主要从以下两个方面 进行改进:(1)制备覆盖率高、致密性好且表面光 滑的钙钛矿吸收层;(2)改进碳电极的制备工艺, 例如采用导电性更好的石墨烯制备浆料,或将石 墨烯直接制备或压制在钙钛矿吸收层上,改善钙 钛矿/碳电极的接触,降低串联电阻,从而提高电 池的效率。

4 结 论

本文以 PbI₂ 粉末溶于 DMSO 与 DMF 混合溶 剂中形成的前驱液制备 PbI₂ 薄膜,然后将 PbI₂ 薄 膜在相同浓度的 MAI/IPA 溶液中浸泡不同时间、

以及在不同浓度的 MAI/IPA 溶液中浸泡相同时 间后得到的 CH₂NH₂PbI₂ 薄膜作为吸收层, 制备基 于碳电极的无空穴传输层的钙钛矿太阳能电池。 研究了浸泡时间和 MAI/IPA 溶液的浓度对 PSCs 光伏性能的影响。结果表明,适当提高 PbI,薄膜 在 MAI/IPA 溶液中的浸泡时间,有利于提高钙钛 矿层的相纯度和结晶性,进而提高电池的光伏性 能。当浸泡时间为40 min 时,钙钛矿太阳能电池 获得了最佳的光伏性能,其开路电压为0.82 V,短 路电流密度为 21.21 mA/cm²,填充因子为 0.49, 光 电转化效率为 8.61%,且在整个可见光区的光子-电子的转换效率接近70%。但是当浸泡时间过 长,CH,NH,PbI,薄膜表面会出现大晶粒,导致钙钛 矿层和碳电极之间接触变差,使得填充因子降低, 从而导致电池光电效率降低。而在相同的浸泡时 间下,MAI/IPA 溶液的浓度则会显著影响 PbI,转 化成 CH₃NH₃PbI₃的速度, MAI/IPA 溶液的浓度越 高,PbI,完全转化成CH,NH,PbI,的速度越快。

参考文献:

- [1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009,131(17):6050-6051.
- [2] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 48) [J]. Prog. Photovoltaics, 2016,24(7):905-913.
- [3] MEI A Y, LI X, LIU L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
 [J]. Science, 2014, 345(6194):295-298.
- [4] CHEN H N, WEI Z H, HE H X, et al. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar

cells to beyond 14% [J]. Adv. Energy Mater., 2016,6(8):1502087-1-10.

- [5] ETGAR L, GAO P, XUE Z S, et al. Mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells [J]. J. Am. Chem. Soc., 2012,134(42):17396-17399.
- [6] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites [J]. Science, 2012,338(6107):643-647.
- [7] ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014,345 (6196):542-546.
- [8] WEI H Y, XIAO J Y, YANG Y Y, et al. Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells [J]. Carbon, 2015,93:861-868.
- [9] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013,499(7458):316-319.
- [10] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition [J]. Nature, 2013, 501 (7467): 395-398.
- [11] HAO F, STOUMPOS C C, LIU Z, et al. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10% [J]. J. Am. Chem. Soc., 2014, 136(46):16411-16419.
- [12] LI T T, PAN Y F, WANG Z, et al. Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: recent advances and perspectives [J]. J. Mater. Chem. A, 2017,5(25):12602-12652.
- [13] REN Z Q,ZHU M H,LI X, et al. An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells [J]. J. Power Sources, 2017,363:317-326.
- [14] ZHANG T Y, YANG M J, ZHAO Y X, et al. Controllable sequential deposition of planar CH₃NH₃PbI₃ perovskite films via adjustable volume expansion [J]. Nano Lett., 2015, 15(6):3959-3963.
- [15] CAI F L, YANG L Y, YAN Y, et al. Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO₂ layer [J]. J. Mater. Chem. A, 2017,5(19):9402-9411.
- [16] CHEN H N. Two-step sequential deposition of organometal halide perovskite for photovoltaic application [J]. Adv. Funct. Mater., 2017,27(8):1605654.
- [17] KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals [J]. Science, 2017,358(6364):745-750.
- [18] LIU F Z, DONG Q, WONG M K, et al. Is excess PbI₂ beneficial for perovskite solar cell performance? [J]. Adv. Energy Mater., 2016,6(7):1502206.
- [19] 李成辉,郑海松,刘俊,等. 钙钛矿太阳能电池的制备工艺与光伏性能研究 [J]. 人工晶体学报, 2017,46(7):1288-1293.
 LI C H, ZHENG H S, LIU J, et al. . Study of preparation processes and photovoltaic performance of perovskite solar cells
 [J]. J. Synth. Cryst., 2017,46(7):1288-1293. (in Chinese)
- [20] BAIKIE T, FANG Y N, KADRO J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH₃NH₃) PbI₃ for solid-state sensitised solar cell applications [J]. J. Mater. Chem. A, 2013,1(18):5628-5641.
- [21] WU Y Z, ISLAM A, YANG X D, et al. Retarding the crystallization of PbI₂ for highly reproducible planar-structured perovskite solar cells via sequential deposition [J]. Energy Environ. Sci., 2014,7(9):2934-2938.
- [22] CHENG N, LI W W, YU Z H, et al. . Combined solvent and vapor treatment to prepare high quality perovskite films under high relative humidity [J]. Electrochim. Acta, 2017,246:990-996.
- [23] CHEN H N, YANG S H. Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? [J]. Adv. Mater., 2017,29(24):1603994-1-16.

郑海松(1992 -),男,广东揭阳人, 硕士研究生,2016年于广东工业大 学获得学士学位,主要从事半导体 材料与器件的研究。 E-mail: 944712659@qq.com

魏爱香(1964 -),女,山西孝义人,博 士,教授,1998 年于中山大学获得博 士学位,主要从事半导体材料与器件 的研究。

E-mail: weiax@gdut.edu.cn