文章编号:1000-7032(2019)03-0289-09

壳聚糖碳点的水热法制备及其对金属离子的选择性研究

汪雪琴¹,洪碧云¹,杨 旋¹,梁 倩^{1,2},黄 彪^{1*},唐丽荣^{1,2*} (1. 福建农林大学材料工程学院,福建福州 350002; 2. 福建农林大学金山学院,福建福州 350002)

摘要:以壳聚糖为碳源通过水热法合成碳点,对影响碳点荧光强度的水热温度、水热时间和壳聚糖质量分数 进行考察。通过紫外分光光度计、荧光分光光度计、原子力显微、Fourier 红外光谱仪、X-ray 光电子能谱、X 射 线衍射仪对壳聚糖碳点的光学性质、化学结构、晶体结构、形貌结构等进行表征分析。结果表明,在水热温度 200 ℃、水热时间 9 h、壳聚糖质量分数 2% 的条件下制备得到的壳聚糖碳点量子产率为 32.86%。碳点呈现 出主要尺寸为 3~10 nm 的球形颗粒状,且在波长 335 nm 激发下,发射峰位于 410 nm(蓝)。对金属离子的选 择性研究分析表明,Fe³⁺ 对碳点溶液的荧光猝灭效应最显著,说明碳点对 Fe³⁺ 具有较好敏感性和高选择性, 且荧光猝灭效率对 Fe³⁺ 浓度在 0~100 µmol/L 范围内呈现线性响应,因此有望将碳点作为荧光探针应用于 Fe³⁺ 的检测表征。

关 键 词:碳点;壳聚糖;荧光探针;水热法;Fe³⁺
 中图分类号:0613.71
 文献标识码:A
 DOI: 10.3788/fgxb20194003.0289

Hydrothermal Preparation of Chitosan Carbon Dots and Their Selectivity to Metal Ions

WANG Xue-qin¹, HONG Bi-yun¹, YANG Xuan¹, LIANG Qian^{1,2}, HUANG Biao^{1*}, TANG Li-rong^{1,2*}

(1. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;

2. Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China)

* Corresponding Authors, E-mail: bhuang@fafu.edu.cn; tanglr0201@126.com

Abstract: In this study, carbon dots(CDs) were synthesized by hydrothermal method using chitosan (CTs) as carbon source. The influences of hydrothermal temperature, hydrothermal time and chitosan mass fraction on the fluorescence intensity of carbon dots were investigated. The optical properties, chemical structure, crystal structure, and morphology of CDs were characterized by using ultraviolet spectrophotometer (UV-vis), fluorescence spectrophotometer, atomic force microscope (AFM), Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and X-ray diffractometer(XRD). The results showed that the quantum yield of CDs was 32.86% at a hydrothermal temperature of 200 °C, a hydrothermal time of 9 h and a chitosan mass fraction of 2%. The carbon dots show a spherical shape with a main size of 3 to 10 nm. When the carbon dots excited at a wavelength of 335 nm, the emission peak is located at 410 nm and presents blue light. The selective analysis of metal ions shows that the fluorescence quenching effect of Fe³⁺ on the CDs is the most significant, indicating that the carbon dots have good sensitivity and high selectivity for

基金项目:林业公益性行科研专项(201504603);国家自然科学基金(31770611);福建省科技厅自然科学基金(2016J01088);福建 农林大学"校杰出青年科研人才"培养专项基金(xjq201422)资助项目

收稿日期: 2018-05-21;修订日期: 2018-08-21

Supported by Special Scientific Research Fund for Public Service Sectors of Forestry (201504603); National Natural Science Foundation of China(31770611); Natural Science Foundation of Fujian Province of China(2016J01088); Fujian Agriculture and Forestry University "School Outstanding Young Scientists" Training Special Fund(xjq201422)

 ${\rm Fe}^{3\, *}$. The fluorescence quenching efficiency exhibits a linear response when ${\rm Fe}^{3\, +}$ concentration in the range of $0 \sim 100 \ \mu {\rm mol/L}$, which makes it possible to use the carbon dots as a fluorescent probe for the detection and characterization of ${\rm Fe}^{3\, +}$.

Key words: carbon dots; chitosan; fluorescence probe; hydrothermal method; Fe³⁺

1引言

碳是自然界中最常见的元素之一,石墨 烯^[1-3]和碳纳米管^[4-5]等多种碳材料被广泛使用。 碳点(CDs)是主要由碳纳米粒子组成、直径小于 10 nm 的荧光碳纳米材料^[6-7]。2004 年由 Xu 等^[8]首次发现,2006 年由 Sun 等^[9]正式命名为碳 点。自此,引起了全世界学者的研究兴趣。作为 21 世纪的新兴产物,碳点不仅具备传统金属基量 子点优异的荧光性能,还兼具碳材料良好的生物 相容性和无毒性,其独特的功能如化学传 感^[10-11]、药物传递^[12-13]、光催化^[14-16]、低毒 性^[17-18]、生物成像^[19-23]和生物传感^[24]使其有望 成为传统半导体量子点的取代者。

类似于传统的半导体量子点,CDs 表面上有 许多电子和空穴,这种性质将 CDs 分配给电子 受体和电子供体作用,因此在某些情况下 CDs 可以作为氧化剂或还原剂^[25-26]。另外, CDs 表 面有许多羟基、氨基或羧基,可以与金属离子配 位并稳定金属纳米粒子[27]。近年来,有研究表 明,可使用 CDs 作为还原剂或稳定剂合成 Ag^[28] 和 Au^[29]纳米颗粒。Chen 等^[30]从天然气烟尘中 制备了一种新型 CDs,并将其用作制备 Ag 纳米 颗粒的稳定剂。Liu 等^[31]发现了一种使用 CDs 作为还原剂和稳定剂一步合成银纳米颗粒的新 方法,并研究了它们的抗菌机理。于淑娟等[32] 通过水热法合成了壳聚糖基聚合点荧光材料, 并研究其在宣纸中的抗紫外老化性能。王霞 等[33]以壳聚糖为原料制备了碳点/壳聚糖荧光 复合物,并研究其在生物成像、荧光涂层等方面 的应用。Yang 等^[34]以壳聚糖为原料,在温度 180 ℃的条件下,水热反应 12 h 得到碳点的量 子产率为7.8%。然而,关于壳聚糖碳点对金属 离子的选择性研究未见报道。

本研究采用水热碳化法合成壳聚糖基碳点,

利用壳聚糖的自钝化功能^[35],不需要额外加入钝 化剂或进一步的修饰,即可获得发光性能好、成本 低、环境友好的碳点材料。另外,通过对金属离子 的选择性进行研究分析,可为进一步拓展新型金 属离子荧光探针的设计与应用提供一定的研究 依据。

2 实 验

2.1 实验原料及主要设备

壳聚糖,脱乙酰度:80%~95%,粘度:50~ 800;乙酸,分析纯;硫酸奎宁(98%);硫酸;KCl、 CaCl₂、NaCl、MgSO₄、Al₂(SO)₃、Zn(NO₃)₂·6H₂O、 FeSO₄·7H₂O、FeCl₃·7H₂O、Pb(NO₃)₂、Cu(NO₃)₂· 3H₂O、HgCl₂、AgNO₃、CoCl₂·6H₂O、Ni(NO₃)₂· 6H₂O、Cd(NO₃)₂·4H₂O 购自上海国药集团化学 试剂有限公司。不同浓度的 Fe³⁺是通过稀释标 准储备液获得,其他金属阳离子溶液在超纯水中 制备。DHG-9236A 型电热恒温干燥箱,购自上海 精宏实验设备有限公司。

2.2 壳聚糖碳点的合成

根据 Yang 等^[34]水热合成法制备碳点的方 案进一步修改,反应机理如图 1 所示。准确称 取一定质量的壳聚糖通过机械搅拌使其充分溶 解在 50 mL 1% (w/w)的醋酸溶液中,将溶液转 移到 100 mL 聚四氟乙烯内胆中,冲入氩气排出 容器内的空气,密封于高温高压反应釜中,在室 温下放入电热烘箱,待温度达到所需温度时开 始计时。反应结束后,待反应釜自然冷却至室 温取出,将获得的产物通过高速(10 000 r/min) 离心 0.5 h 分离黄棕色的产物,然后将上清液先 后通过 0.45 μm 和 0.22 μm 的水系滤膜除去滤 渣,随后用旋转蒸发仪浓缩至 40 mL,放于 -4 ℃冰箱中冷藏保存备用。分别取 1 mL 不同条 件下制备的碳点溶液定容至 50 mL,对荧光性能 进行研究分析。

图 1 水热法制备壳聚糖碳点示意图 Fig. 1 Schematic diagram of hydrothermal preparation of CDs

2.3 量子产率的计算

壳聚糖碳点的量子产率(Q)通过参比法^[36-37] 计算。将硫酸奎宁溶解于 0.1 mol/L H₂SO₄ 溶液 (文献参考值 $Q_s = 0.54$)作为标准来测定,分别对 参比物和壳聚糖碳点溶液的荧光发射光谱、紫外 吸收光谱进行扫描,相对量子产率通过公式(1) 计算:

$$Q_{\rm x} = Q_{\rm s} \times \frac{F_{\rm u}}{F_{\rm x}} \times \frac{A_{\rm s}}{A_{\rm x}} \tag{1}$$

其中,Q表示量子产率;F表示荧光发射光谱的峰面积;A代表了最大激发波长处样品的吸光度;下标S和X分别代参比物和待测样品。

2.4 金属离子的选择性研究

选取 200 µL 环境相关的金属离子(浓度均为 10 mmol/L),包括 K⁺、Ca²⁺、Na⁺、Mg²⁺、Al³⁺、 Zn²⁺、Fe²⁺、Fe³⁺、Pb²⁺、Cu²⁺、Hg²⁺、Ag⁺、Co²⁺、 Ni²⁺、Cd²⁺等,加入到 2 mL 碳点溶液中,通过机 械振荡充分混匀,观察碳点溶液加入金属离子 前后的荧光强度变化,对金属离子进行选择性 研究。用 P_0 表示碳点溶液的荧光强度, P 表示 添加金属离子后的荧光强度,荧光猝灭灵敏度 使用加入金属离子前后的荧光强度比值 P/P_0 进行分析。

2.5 性能表征

采用 UV-3200 型紫外分光光度计对碳点溶 液的吸收光谱进行检测;采用日本日立 F-7000 型 荧光分光光度计对碳点溶液进行波长扫描,扫描 参数为:激发狭缝和发射狭缝均为5 nm,扫描速 率 240 nm/min,电压 600 V,扫描频率 40 Hz;采用 美国 NanoScope IIIa MuliMode 型原子力显微镜以 轻敲模式对碳点成像;采用美国 Nicolet 380 型 Fourier 变换红外光谱仪分析样品的表面官能团; 采用英国 Zetasizer Nano S90 型激光粒度分析仪 对壳聚糖碳点溶液的ζ电位进行测试,分析样品 基团所带电荷的正负性;采用美国 PHI 5000 Versaprobe Ⅱ型 X-ray 光电子能谱对样品进行 C、N、 O 的高分辨率 XPS 能谱扫描,用 Multipak 软件计 算能谱图中峰面积得到壳聚糖和碳点的元素原子 比率;采用德国布鲁克 D8-Advance 型 X 射线衍射 仪分析壳聚糖热液碳化前后的晶体结构变化,测 试参数为:以 Cu-Kα 为射线源,Ni 片滤波,管电压 80 kV,扫描速度 0.1(°)/s;采用 WFH-203B 型暗 箱式三用紫外分析仪观察碳点溶液在紫外线照射 下的光致发光现象。

3 实验结果与讨论

3.1 碳点的制备条件分析

3.1.1 水热温度的影响

在壳聚糖质量分数 2%、水热时间 9 h 的条件 下,考察碳点溶液的荧光强度随不同水热温度的 变化趋势,如图 2 所示为不同水热温度制得碳点 溶液的荧光发射谱。由图可知,随水热温度的升 高,荧光强度呈现先增加后降低的趋势。当水热 温度 达到 200 ℃时,荧光强度 达到最大值 (4 582.19),继续升高温度荧光强度开始降低,且 水热温度为 160 ℃和 180 ℃(荧光强度分别为 1 302.76,2 535.80)表现出比水热温度 220 ℃

Fig. 2 Fluorescence emission spectra of CDs prepared at different hydrothermal temperatures

和 240 ℃(荧光强度分别为3 506.13,3 437.84)更 弱的荧光峰。这是由于温度较低,反应不够充 分,碳点产量较少,荧光发射强度较弱。温度过 高,导致碳点颗粒过度碳化,结构破坏,荧光强 度降低。

3.1.2 水热时间的影响

在壳聚糖质量分数 2%、水热温度 200 ℃的 条件下,考察碳点溶液的荧光强度随不同水热时 间的变化趋势,如图 3 所示为不同水热时间制得 碳点溶液的荧光发射谱。由图可知,荧光强度随 水热时间的延长呈现先增加后缓慢降低的趋势。 当水热时间为 6 h 时荧光强度最弱(2 994.65), 当水热时间为 9 h 时荧光强度达到最大值 (4 582.19),水热时间从 6 h 增加到 9 h,荧光强 度的增幅达到最大值(53.01%),且继续延长水 热时间荧光强度开始缓慢降低。这可能是由于 随着反应时间的延长反应更充分,碳点产量增 加,时间较长,部分已形成碳点的颗粒继续受热 过度碳化使其结构遭受破坏,与水热温度的影 响类似。

3.1.3 不同壳聚糖质量分数对碳点荧光强度的 影响

在水热温度 200 ℃、水热时间 9 h 的条件 下,考察碳点溶液的荧光强度随不同壳聚糖质 量分数的变化趋势,图 4 为不同壳聚糖质量分 数制得碳点溶液的荧光发射谱。由图 4 可知, 随壳聚糖溶解浓度的增加,荧光强度呈现先增 加后减小的趋势。当壳聚糖质量分数为 1% 时 荧光强度(3 766.48)最弱,壳聚糖质量分数为 3.5% 时,碳点溶液的荧光强度(5 246.04)达到 最大值,继续增加壳聚糖浓度荧光强度开始下 降。这是由于当壳聚糖浓度小于 3.5% 时,随着 壳聚糖浓度的提高,增加了单位空间内生成的 碳点颗粒数量。但是继续增加壳聚糖浓度,相 对溶剂量减少,反应空间减少,使得水热反应不 充分,因此荧光强度降低。虽然壳聚糖浓度为 3.5% 时碳点溶液的荧光强度达到最大值,但是 壳聚糖质量分数在2%~3.5% 时,荧光强度增幅 (14.48%)较壳聚糖质量分数 1%~2%(增幅 21.66%)的小。为避免不必要的原料损失,使 原料利用率达到最大化,选取壳聚糖浓度 2% 作 为后续实验研究条件。

图 4 不同壳聚糖浓度的碳点溶液的荧光发射谱

Fig. 4 Fluorescence emission spectra and excitation spectra of CDs with different chitosan concentration

3.2 碳点的形貌分析

如图 5 所示为水热法合成的壳聚糖碳点的 原子力显微镜图。根据 AFM 成像得到 CDs 的 尺寸大小,结果表明 CDs 的尺寸范围为 3~10 nm,呈现出球形或类球形的纳米颗粒状,且均匀 分布。

图 5 CDs 的 AFM 图 Fig. 5 AFM images of CDs

3.2.1 光学性能分析

图 6 为 CDs 的荧光和紫外吸收光谱。由图 6 (a)可知激发峰和发射峰之间存在较大的能量差 异,表明 CDs 具有半导体能带。CDs 显示出以 292 nm 为中心的强紫外-可见吸收特征,与 Yang 等^[34]报道的结果一致。CDs 在紫外光下显示明 亮的蓝色荧光,量子产率约为 32.86%。如图 6 (b)所示为碳点溶液在不同激发波长下的荧光发 射谱,荧光强度随着激发波长的增加先增加后下 降。碳纳米颗粒的形成及其表面功能化在热液碳 化过程中同时发生,丰富的官能团(如氨基)可以 在表面引人不同的缺陷,充当激发能量空穴并导 致荧光发射^[38]。从波谱中可以得到最大荧光强 度对应的激发波长为 335 nm,发射波长为 410 nm。

- 图 6 碳点的紫外吸收和荧光激发与荧光发射光谱(插图 为它们在日光和紫外光下的数码照片)(a)及不同 波长激发下的发射光谱(b)
- Fig. 6 UV absorption spectrum, fluorescence emission spectra and fluorescence excitation spectra of CDs(a), and PL emission spectra of CDs(b), respectively.

3.2.2 FTIR 分析

图 7 显示了壳聚糖(CTs)和碳点(CDs)的 FTIR 谱。壳聚糖在 3 432 cm⁻¹处表现出 O—H 和氨基的 N—H 伸缩振动特征吸收峰,在 2 874 cm⁻¹处表现为亚甲基的 C—H 伸缩振动吸收峰, 在1650 cm⁻¹和1596 cm⁻¹处为 N—H 弯曲振动 吸收峰,在1157 cm⁻¹处对应吡喃糖环的 C—H 弯曲振动吸收峰。碳点在3411 cm⁻¹处表现出的 O—H和N—H 伸缩振动吸收峰向小波数移动, 在2927 cm⁻¹和2882 cm⁻¹处出现了 C—H 伸缩 振动吸收峰,并且与壳聚糖相比,在1600 cm⁻¹处 氨基的吸收峰强度更大,与吡喃糖相关的1157 cm⁻¹处的 C—H 振动减弱。这些特征可以解释碳 点的形成为壳聚糖链的降解和通过脱水分解吡喃 糖环。壳聚糖碳点的 ζ 电位测量结果为正值 (+77.6 mV),这是由于 CDs 的表面具有氨基。 说明壳聚糖的水热碳化是获得氨基官能化荧光碳 纳米颗粒的有效方法。

3.2.3 XRD 分析

图 8 为壳聚糖(CTs)和壳聚糖碳点(CDs)的 XRD 衍射图,分析比较了壳聚糖水热碳化前后的 晶体结构变化。由图可知,壳聚糖在 2 θ = 18.9° 处具有主晶峰,在热液碳化后,壳聚糖的结晶度降 低,这是由于壳聚糖的结晶区受热分解破坏导致 的。碳点在 2 θ = 23.8°处显示更宽的峰,表明存 在无定形碳相^[39]。

Fig. 8 XRD diffraction of CTs and CDs

图 9 壳聚糖(a)和碳点(b)的 XPS 能谱图

Fig. 9 $\,$ XPS survey scan of CTs (a) and CDs (b), respectively.

谱图。分析壳聚糖及碳点的表面状态,结果显示 两者均含有 C、O 和 N 3 种元素。以 399.03 eV 为 中心的壳聚糖的 N_{1s}峰与 NH₂ 状态下的芳香族 N 相关联,而碳点在 399.55 eV 处的 N_{1s}峰与被赋予 表面官能化的 NH₂ 的 N 相关联。元素分析表明 壳聚糖的组成为 36.14% 的 C、8.02% 的 N、55.84% 的 O,而碳点的组成为 58.54% 的 C、3.62% 的 N、 37.84% 的 O。发现壳聚糖经水热碳化后碳含量 明显增加,这主要是由于壳聚糖脱水过程中损失 了氧和氢。

3.3 碳点对金属离子的选择性研究

图 10(a)、(b)分别为碳点溶液加入相同添 加量的不同金属离子后的荧光发射谱和荧光强度 变化图。由图 10(a)可知,含相同添加量的不同 金属离子的碳点溶液中,加入 Fe³⁺的碳点溶液荧 光强度降低最显著;由图 10(b)可知,其荧光强度 下降至原溶液的 10.6%,而其他金属离子对碳点 溶液的荧光猝灭效应不显著。说明碳点对 Fe³⁺ 具有敏感性和高选择性。

图 10(c) 为加入不同浓度 Fe³⁺(0~150 μmol/L)的碳点溶液的荧光发射谱,表明 Fe³⁺的

图 10 添加不同金属离子的碳点溶液的荧光发射谱图(a)和荧光强度变化图(b);碳点溶液加入不同浓度 Fe³⁺(0~150 μmol/L)的荧光发射谱图(c)和响应 Fe³⁺浓度的回归曲线(d)。

Fig. 10 Fluorescence emission spectra (a) and PL intensity change (b) of CDs added with different metal ions. Fluorescence emission spectra upon addition of concentrations of Fe^{3+} (0 ~ 150 µmol/L) in the CDs(c) and a linear regression curve of the CDs in response to Fe^{3+} concentration(d).

295

加入可以有效猝灭 CDs 的荧光。根据荧光猝灭 程度,对感应不同浓度 Fe³⁺的碳点溶液的荧光强 度变化进行线性拟合,做出回归曲线如图 10(d) 所示。由图可知,荧光猝灭效率对 Fe³⁺在 0~100 μ mol/L 的浓度范围内呈线性响应。图中所示 的校准曲线可以表示为($P_0 - P$)/ $P_0 = 0.00659$ ([Fe³⁺]: μ mol/L) - 0.02398,线性相关系数为 0.993 25,其中 P_0 表示碳点溶液的荧光强度,P表示分别添加 0~100 μ mol/L Fe³⁺的碳点溶液的 荧光强度。

4 结 论

通过水热处理壳聚糖合成氨基官能化的荧光碳 点,在紫外激发下呈现出强烈的蓝色荧光。CDs 的 XRD 谱在 $2\theta = 23.8^{\circ}$ 处存在宽峰,证明碳点的无定形 结构。由 XPS 分析可知,水热碳化后碳点的 C 含量 (58.54%)明显增加,这主要是由于壳聚糖(C 含量 为 36.14%)脱水过程中损失了氧和氢。制备得到的 CDs 具有灵敏的 Fe³⁺检测能力($P/P_0 = 10.6\%$),基 于荧光猝灭效率对 Fe³⁺在浓度 0~100 µmol/L 范围 内呈现线性响应,可用于 Fe³⁺的定量分析检测。

参考文献:

- [1] DALAL J, GUPTA A, LATHER S, et al. Poly (3,4-ethylene dioxythiophene) laminated reduced graphene oxide composites for effective electromagnetic interference shielding [J]. J. Alloys Compd., 2016,682:52-60.
- [2] ZHAO D L, GAO X, WU C N, et al. Facile preparation of amino functionalized graphene oxide decorated with Fe₃O₄ nanoparticles for the adsorption of Cr(VI) [J]. Appl. Surf. Sci., 2016,384:1-9.
- [3] ZHAO Y J, LI C, FAN X Y, et al. Study on the separation performance of the multi-channel reduced graphene oxide membranes [J]. Appl. Surf. Sci., 2016,384:279-286.
- [4] SINGH R P, SHARMA G, SONALI, et al. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery [J]. Mater. Sci. Eng. C, 2016,67:313-325.
- [5] SREEKANTH M, GHOSH S, BISWAS P, et al. . Improved field emission from indium decorated multi-walled carbon nanotubes [J]. Appl. Surf. Sci., 2016,383:84-89.
- [6] HU Q, PAAU M C, ZHANG Y, et al. Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots [J]. J. Chromatogr. A, 2013,1304:234-240.
- [7] TUERHONG M, YANG X U, YIN X B. Review on carbon dots and their applications [J]. Chin. J. Anal. Chem., 2017, 45(1):139-150.
- [8] XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J]. J. Am. Chem. Soc., 2004, 126(40):12736-12737.
- [9] SUN Y P,ZHOU B,LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. J. Am. Chem. Soc., 2006,128(24):7756-7757.
- [10] QIAN Z S, SHAN X Y, CHAI L J, et al. Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor [J]. ACS Appl. Mater. Interfaces, 2014,6(9):6797-6805.
- [11] ZHANG L L, HAN Y J, ZHU J B, et al. Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots [J]. Anal. Chem., 2015,87(4):2033-2036.
- [12] DING H, DU F Y, LIU P C, et al. DNA-carbon dots function as fluorescent vehicles for drug delivery [J]. ACS Appl. Mater. Interfaces, 2015,7(12):6889-6897.
- [13] CHEN P, WANG Z Y, ZONG S F, et al. pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells [J]. Biosens. Bioelectron., 2016,75:446-451.
- [14] SAHU S, LIU Y M, WANG P, et al. Visible-light photoconversion of carbon dioxide into organic acids in an aqueous solution of carbon dots [J]. Langmuir, 2014, 30(28):8631-8636.
- [15] FERNANDO K A S, SAHU S, LIU Y M, et al. Carbon quantum dots and applications in photocatalytic energy conversion [J]. ACS Appl. Mater. Interfaces, 2015,7(16):8363-8376.
- [16] TADA H, FUJISHIMA M, KOBAYASHI H. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion [J]. Chem. Soc. Rev., 2011,40(7):4232-4243.

- [17] HUANG H, LI C G, ZHU S J, et al. . Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications [J]. Langmuir, 2014, 30(45):13542-13548.
- [18] 曲松楠,刘星元,申德振. 氮掺杂发光碳纳米点的研究探索 [J]. 发光学报, 2014,35(9):1019-1026.
 QU S N, LIU X Y, SHEN D Z. Studies on nitrogen-dopped carbon nanodots [J]. *Chin. J. Lumin.*, 2014,35(9):1019-1026. (in Chinese)
- [19] CAO L, WANG X, MEZIANI M J, et al. Carbon dots for multiphoton bioimaging [J]. J. Am. Chem. Soc., 2007, 129(37):11318-11319.
- [20] LUO P G, SAHU S, YANG S T, et al. . Carbon "quantum" dots for optical bioimaging [J]. J. Mater. Chem. B, 2013, 1(16):2116-2127.
- [21] YANG S T, CAO L, LUO P G, et al. . Carbon dots for optical imaging in vivo [J]. J. Am. Chem. Soc. , 2009, 131(32): 11308-11309.
- [22] BIJU V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy [J]. Chem. Soc. Rev., 2014,43(3):744-764.
- [23] XU J J,ZHAO W W,SONG S P, et al. Functional nanoprobes for ultrasensitive detection of biomolecules: an update [J]. Chem. Soc. Rev., 2014,43(5):1601-1611.
- [24] LIN L P, RONG M C, LUO F, et al. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications [J]. TrAC Trends Anal. Chem., 2014,54:83-102.
- [25] TIAN L, GHOSH D, CHEN W, et al. Nanosized carbon particles from natural gas soot [J]. Chem. Mater., 2009, 21(13):2803-2809.
- [26] HAN S,ZHANG H,XIE Y J, et al. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent [J]. Appl. Surf. Sci., 2015,328:368-373.
- [27] SHEN L M, CHEN M L, HU L L, et al. Growth and stabilization of silver nanoparticles on carbon dots and sensing application [J]. Langmuir, 2013,29(52):16135-16140.
- [28] JIN J C, XU Z Q, DONG P, et al. One-step synthesis of silver nanoparticles using carbon dots as reducing and stabilizing agents and their antibacterial mechanisms [J]. Carbon, 2015,94:129-141.
- [29] WANG X L, LONG Y J, WANG Q L, et al. Reduced state carbon dots as both reductant and stabilizer for the synthesis of gold nanoparticles [J]. Carbon, 2013,64:499-506.
- [30] CHEN Q Y, WANG Y F, WANG Y W, et al. Nitrogen-doped carbon quantum dots/Ag₃PO₄ complex photocatalysts with enhanced visible light driven photocatalytic activity and stability [J]. J. Colloid Interface Sci., 2017,491:238-245.
- [31] LIU R L, WU D Q, LIU S H, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers [J]. Angew. Chem. Int. Ed. Engl., 2009,48(25):4598-4601.
- [32] 于淑娟, 汪丰, 罗振静, 等. 壳聚糖基聚合物点荧光材料的合成及其对纸张的抗紫外老化性能 [J]. 发光学报, 2017, 38(11):1443-1449.
 YU S J, WANG F, LUO Z J, et al. . Synthesis of chitosan-based polymer carbon dots fluorescent materials and their UV aging resistance properties for paper [J]. Chin. J. Lumin., 2017, 38(11):1443-1449. (in Chinese)
- [33] 王霞,吴文承,袁俊超,等. 微波原位法制备碳点/壳聚糖荧光复合物及其应用研究 [J]. 高分子学报, 2016(2): 226-233.
 WU X,WU W C,YUAN J C, et al. . In situ construction of fluorescent carbon dots/chitosan composites with straightforward

wU X, wU w C, YUAN J C, et al. . In situ construction of fluorescent carbon dots/ chitosan composites with straightforward applications [J]. Acta Polym. Sinica, 2016(2):226-233. (in Chinese)

- [34] YANG Y H, CUI J H, ZHENG M T, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan [J]. Chem. Commun., 2012,48(3):380-382.
- [35] TAN M Q,ZHANG L X, TANG R, et al. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source [J]. Talanta, 2013,115:950-956.
- [36] WANG C X, LIN H H, XU Z Z, et al. Tunable carbon-dot-based dual-emission fluorescent nanohybrids for ratiometric optical thermometry in living cells [J]. ACS Appl. Mater. Interfaces, 2016,8(10):6621-6628.
- [37] LIANG Q, WANG Y L, LIN F C, et al. A facile microwave-hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and their application [J]. Anal. Methods, 2017,9(24):3675-3681.

- [38] RAY S C, SAHA A, JANA N R, et al. Fluorescent carbon nanoparticles:synthesis, characterization, and bioimaging application [J]. J. Phys. Chem. C, 2009,113(43):18546-18551.
- [39] 王景霞, 童刚生, 刘涛, 等. 一种单光子/双光子无定形碳点的制备及生物应用: 中国, CN104386665A [P]. 2015-03-04.

WANG J X, TONG G S, LIU T, *et al.*. Preparation method and bioapplication of single photon/double photon amorphous carbon dot: China, CN104386665A [P]. 2015-03-04. (in Chinese)

汪雪琴(1990-),女,福建泉州人, 硕士,2018年于福建农林大学获得 硕士学位,主要从事生物质炭材料 与功能高分子材料的研究。 E-mail: fafuwxq@163.com

唐丽荣(1984 -),女,甘肃天水人,博 士,讲师,硕士生导师,2013 年于福建 农林大学获得博士学位,主要从事生 物质功能材料方面的研究。 E-mail: tangh0201@126.com

黄彪(1966 -),男,福建古田人,博 士,教授,博士生导师,2004 年于南 京林业大学获得博士学位,主要从 事植物纤维化学和炭材料的研究。 E-mail: bhuang@fafu.edu.cn