2010年6月

文章编号:1000-7032(2010)03-0353-06

Na-Mg 共掺杂 ZnO 薄膜的结构和光学性质

锁雅芹,刘肃*,刘凤琼,尹晓丽,闫 鑫,常 江 (兰州大学物理科学与技术学院,甘肃兰州 730000)

摘要:利用溶胶-凝胶法,在普通载玻片上使用旋转涂膜技术制备了具有 *c* 轴择优取向生长的 Na-Mg 共掺杂的 ZnO 薄膜。用 XRD、SEM、光致发光(PL)及透射光谱对薄膜样品进行了表征。结果表明:Na-Mg 共掺杂有利于 ZnO 薄膜的 *c* 轴择优取向生长,并且随着 Na⁺掺杂浓度的增加,晶粒尺寸先增大后减小;通过比较不同掺杂浓度 ZnO 薄膜的 PL 谱,推测发光峰值位于 380 nm 的紫外发射与 ZnO 的自由激子复合有关;发现掺入 Mg 的确能使 ZnO 禁带宽度增大,掺杂组分为 Na_{0.04} Mg_{0.2}Zn_{0.76}O 时,其 PL 谱只有一个很强的紫光发射峰,其近带 边紫外光发射强度较未掺杂的 ZnO 增强了近 10 倍,极大地提高了薄膜紫外发光性能;并且随 Na⁺浓度增加 薄膜透光性减弱。

关 键 词: ZnO 薄膜; Na-Mg 共掺杂; 溶胶-凝胶法; 光致发光谱
 中图分类号: 0472.3; 0482.31
 PACS: 78.55. Et
 PACC: 7855
 文献标识码: A

1引言

ZnO 是一种具有六方纤锌矿结构的 II-VI族 自激活的宽禁带半导体材料,是 P6mm 点群对称 的六角晶系纤锌矿晶体。其室温带隙宽度 3.37 eV^[1,2],激子束缚能高达 60 meV,具有良好 的光电、压电、光敏、压敏特性,在可见光区域内有 较大的透光率,是制备蓝光、蓝绿光、紫外光等发 光器件的优选材料之一。

制备 ZnO 的技术有很多,主要有超声喷雾热 解法(USP)^[3]、射频反应溅射法^[4]、分子束外 延^[5]及溶胶-凝胶法(sol-gel)^[6~8]等。其中溶胶-凝胶法具有合成温度低、工艺简单、成本低和成膜 面积大等特点,而且可以在溶胶中添加各种必要 的掺杂剂,容易实现对多种元素掺杂的 ZnO 薄膜 的制备,因此溶胶-凝胶法制备 ZnO 薄膜非常有意 义。研究指出当掺入微量的 Al、Ga、In 等元素,可 使 n 型 ZnO 薄膜的性能变得更加优异^[9~11]。近 年来,Ohtomo A 等^[12]发现通过 Mg 掺杂可调控 ZnO 的能带结构,随着 Mg 含量的改变,能隙宽度 可由 3.37 eV 增加到 3.87 eV。报道指出:Mg 的 掺入导致 Zn 4s 态向高能端的偏移是导致禁带宽 度增大的根本原因^[13]。另外,掺入 I 族元素可实 现 ZnO 的转型^[14~16]。因此,本文选用 Na-Mg 共 掺杂,研究 ZnO 薄膜的结构、表面形貌和光学性 质的变化,从而了解 Na-Mg 共掺对 ZnO 薄膜微结 构及光学性质的影响,为以后做出高性能发光的 p 型 ZnO 奠定基础。

本文用溶胶-凝胶法制备出了不同浓度的 Na_xMg_{0.2}Zn_{0.8-x}O薄膜,在本实验中我们选取的 Mg²⁺浓度为整个胶体阳离子浓度的20%,因为 Ohtomo A等^[12]的研究结果认为当 Mg²⁺浓度大于 阳离子总浓度的36%时,开始出现 MgO相分离。 胡界博等^[17]研究也表明 Mg²⁺浓度在0.1~0.37范 围内,合金薄膜仍然保持ZnO六角纤锌矿结构, Mg²⁺以杂质形式出现在ZnO薄膜的晶格中,占据 着ZnO的Zn位或间隙位,没有出现与MgO立方相 有关的衍射峰,并且在Mg²⁺浓度为0.2时其可见 发射峰最强。采用XRD、SEM、PL和透射对薄膜进 行表征,并着重对不同 Na⁺掺杂浓度对其结构特 性、表面形貌和光学性质的影响进行了探讨。

2 实 验

实验中选用乙酸锌(Zn(CH₃COO)₂·2H₂O)

E-mail: suoyaqin0723@126.com

收稿日期: 2010-01-22;修订日期: 2010-04-12

基金项目:国家基础科学人才培养基金(J0630313);东南大学 MEMS 教育部重点实验室开放课题基金(2006SEU-MEMS02)资助项目 作者简介:锁雅芹(1985-),女,宁夏同心人,主要从事半导体纳米材料制备及性质的研究。

^{*:}通讯联系人; E-mail: liusu@lzu.edu.cn

和氯化镁(MgCl₂·6H₂O)、氯化钠(NaCl)为初始 原料。称取一定量的Zn(CH₃COO)₂·2H₂O溶于 100 mL 甲醇,配置成 0.4 mol/L 的甲醇溶液,加入 与乙酸锌等摩尔量的二乙醇胺 (HN(CH₂CH₂OH)₂)作稳定剂。称取定量的 MgCl₂·6H₂O,然后选取不同的*x*,即不同量的 NaCl,在60℃恒温水浴下磁力搅拌1h,配置成以 下三个均匀、透明的溶胶胶系。①未掺杂的ZnO; ②Mg_{0.2}Zn_{0.8}O;③Na_xMg_{0.2}Zn_{0.8-x}O(其中*x*分别取 0.02,0.04,0.06),室温密闭陈化24h备用。本 实验所用试剂均为分析纯。

采用载玻片作为衬底材料,在涂膜前分别用 乙醇、丙酮和去离子水在超声波中清洗。用自制 甩胶机进行涂膜,第一层旋转时间为45 s。涂膜 结束后立即放入100 ℃恒温箱中干燥10 min,冷 却至室温。然后进行第二次涂膜,每增加一层时 间多5 s,共涂膜5 层后,放入马弗炉中,在560 ℃ 下退火1 h。

采用 D/Max-2400 型 X 射线衍射仪、S-4800 扫描电子显微镜、荧光光谱仪、Shimadzu UV-3600 紫外-可见透射光谱仪对所做 ZnO 薄膜进行结构 特性、形貌结构和光致发光特性以及透射光谱进 行表征。

3 结果与讨论

3.1 结构性质与表面形貌

图 1 给出了未掺杂的 ZnO、Mg_{0.2} Zn_{0.8} O 和 Na⁺掺杂浓度分别为 0.02,0.04,0.06 mol/L 的 Na_xMg_{0.2}Zn_{0.8-x} O 薄膜的 X 射线衍射图。根据 XRD 数据,表 1 列出了样品在(002)峰的基本参 数。可以看出只掺 Mg 和 Na-Mg 共掺的薄膜均具 有 ZnO 的结构特性。相比未掺杂的 ZnO,只掺 Mg

的 M_{g_0} , $Zn_{0,s}O$ 薄膜(002) 晶面衍射角明显增大, 晶面间距由 28.324 nm 减小到 26.106 nm; 目掺 Mg之后100、101方向衍射峰峰形变得尖锐,明显 高过002 方向的衍射峰,说明只掺 Mg 提高了薄 膜的结晶性但并没有达到 c 轴择优生长。在 Na-Mg 共掺杂的 ZnO 胶系中, 随着 Na⁺掺杂浓度的 增加,(002)晶面处的衍射角逐渐增大,这表明晶 面间距在逐渐减小,002 方向出现了较强的 ZnO 衍射峰。由表1可见 Na-Mg 共掺后,晶粒尺寸 D 先增大后减小,晶格常数 c 随 Na⁺掺杂浓度的增 加而减小。对于未掺杂 ZnO 与 Na_xMg_{0.2}Zn_{0.8-x}O 中 Na⁺掺杂浓度为 0.04 时,110 方向衍射峰几乎 与002方向同高,002方向择优生长不明显,而只 掺 Mg 后 002 方向比 100 和 101 都低,同时 Na⁺掺 杂浓度为0.02 和0.06 时则出现了较强的002 衍 射峰和较弱的(100)、(110)晶面的衍射峰,002 方向明显的择优生长,说明此时 Na-Mg 共掺有利 于 ZnO 薄膜的 c 轴取向生长。这可能是因为 Na⁺半

- 图 1 未掺杂和掺杂的 ZnO 薄膜 X 射线衍射(XRD)谱
 (a) ZnO;(b) Mg_{0.2}Zn_{0.8}O;(c) Na_{0.02}Mg_{0.2}Zn_{0.78}O;
 (d) Na_{0.04}Mg_{0.2}Zn_{0.76}O;(e) Na_{0.06}Mg_{0.2}Zn_{0.74}O。
- Fig. 1 XRD patterns of undoped ZnO and doped ZnO thin films,
 - (a) ZnO; (b) $Mg_{0.2}$ Zn_{0.8} O; (c) $Na_{0.02}$ $Mg_{0.2}$ Zn_{0.78} O;
 - (d) $Na_{0.04}Mg_{0.2}Zn_{0.76}O;(e)Na_{0.06}Mg_{0.2}Zn_{0.74}O.$

表1 XRD 图谱中各条曲线的(002)峰的参数计算与比较

Table 1 The microstructure parameters of undoped ZnO, $Mg_{0.2} Zn_{0.8} O$ and $Na_x Mg_{0.2} Zn_{1-x} O$ thin films with different Na doped concentrations

	Diffractive angle	Lattice surface space	FWHM	Crain size	Lattice constant
Sample	Diffactive angle	Lattice surface space	1 WIIM	orani size	Lattice constant
	2 <i>θ</i> ∕(°)	d∕ nm	(°)	D∕ nm	c∕ nm
ZnO	34.18	28.342	0.303	29.0	0.522 9
$Mg_{0.2}Zn_{0.8}O$	34.32	26.106	0.216	43.3	0.521 5
$Na_{0.02}Mg_{0.2}Zn_{0.78}O$	34.30	26.122	0.197	48.9	0.521 2
$\mathrm{Na_{0.04}Mg_{0.2}Zn_{0.76}O}$	34.38	26.064	0.221	42.2	0.520 8
$\rm Na_{0.06}Mg_{0.2}Zn_{0.74}O$	34.40	26.048	0.211	44.8	0.520 0

径(0.099 nm)大于 Zn^{2+} 半径(0.074 nm),掺杂浓 度为0.02 时, Na^+ 主要作为受主取代 Zn^{2+} , 形成 受主取代缺陷, 对 ZnO 晶格没有形成明显的破 坏; 当掺杂浓度为0.04 时, Na^+ 浓度增大,除了形 成受主取代缺陷还有部分 Na^+ 将作为施主进入 ZnO 的晶格, 形成间隙 Na 缺陷, 导致晶格结构松 散,使得其 c 轴择优取向不明显。但是当掺杂浓 度增至0.06 时, Na^+ 浓度过大, 由 JADE 软件分析 $Na_{0.06}$ Mg_{0.2} Zn_{0.74}O 的衍射图样在 2θ 为 45.416°时 的衍射峰对应为 NaCl,则部分 Na⁺ 以 NaCl 晶体 析出(由图 2 中(e)可以看出),降低了晶格中 Na⁺浓度, Na⁺又主要以受主形式存在于 ZnO 晶 格。所以 Na-Mg 共掺后, 晶粒尺寸表现为先增大 后减小。

- 图 2 未掺杂和不同掺杂浓度 ZnO 的薄膜表面的扫描电 镜形貌特性(a) ZnO;(b) Na_{0.02} Mg_{0.2} Zn_{0.78} O;(c) Na_{0.04} Mg_{0.2} Zn_{0.76} O;(d)、(e) Na_{0.06} Mg_{0.2} Zn_{0.74} O。

从图 2 中可以看出 Na-Mg 共掺后,晶粒尺寸 明显增大,掺杂后的 ZnO 仍呈六角形,表面光滑, 颗粒致密,粒径在 40 ~ 50 nm 左右,与 XRD 计算 的结果基本一致。Na⁺掺杂浓度为 0.02 和 0.06 时,薄膜表面颗粒呈柱状生长,有比较明显的 *c* 轴 择优取向的生长方式,而 Na⁺掺杂浓度为 0.04 时,表面颗粒呈片状生长,*c* 轴择优取向不明显, 与 XRD 中未掺杂和 0.04 样品中(002)方向强度 不明显一致,经 XRD 中分析是由间隙 Na 缺陷所 致。当 Na⁺掺杂浓度增至 0.06 时,薄膜表面有个 别较大的白色颗粒出现,如图 2(d)中右下角(e) 所示,在 XRD 中由 JADE 软件分析,是掺入的 NaCl 晶体在溶解烘干后重新结晶而成^[18]。因为 NaCl 是离子晶体,依靠吸引较强的静电库仑力而 结合,其结构稳固,结合能数量级高,相比之下, Mg 元素的电负性(-231.6)要小于 Na 元素 (53.075),而且 Mg 的亲和能为负数(-231.6 kJ/mol),Na 为正数(52.9 kJ/mol),所以与 NaCl 相比,MgCl₂ 更易在溶胶中电离,使 Mg²⁺离子掺 入薄膜,NaCl 析出,从而抑制了掺入 ZnO 晶格中 的 Na⁺浓度,减少了 ZnO 晶格中间隙 Na 缺陷,使 其又出现了明显的 *c* 轴择优取向,故又呈柱状 生长。

3.2 PL 谱

图 3 是未掺杂的 ZnO、Mg0.2 Zn0.8 O 和 Na, Mg0.2-Zn_{0.8-x}O(Na⁺掺杂浓度分别为0.02,0.04,0.06) 薄膜在室温下的 PL 谱,激发波长为 325 nm(3.81 eV)。测量发现了未掺杂的 ZnO 和只掺 Mg 后的 Mg₀,Zn₀,O薄膜均只有一个宽的紫光发射带,但 是未掺杂的 ZnO 发光强度非常低,相比之下 Mg0.2Zn0.8O 薄膜紫光发射强度增强约4倍,且紫 光峰从 387 nm 蓝移到 376 nm,表明掺 Mg 之后的 ZnO 禁带宽度的确有所增大。Na-Mg 共掺的 ZnO 薄膜的荧光发射谱主要存在两个荧光发射带,分 别是中心波长位于 380 nm(3.26 eV) 附近、强而 窄的紫带和 490 nm (2.53 eV) 附近、弱而宽的绿 带。通常认为 380 nm 的紫外发射是由近带边自 由激子复合引起的^[19],一般情况下,由于原子对 激子的约束能比较低,只有几个 meV,室温下的 热能足以使得束缚激子成为自由激子。可以看出 五种样品的 PL 谱在 380 nm 附近都有窄而强的紫 外光发射,推测发光中心位于380 nm 的紫外发射 与ZnO的自由激子复合有关,但是Na-Mg共掺 后,近带边发射峰较未掺杂的 ZnO 有蓝移现象, 其强度也增加约4~10倍,半峰全宽变窄,通常近 带边发射峰强度越强,说明薄膜结晶质量越好,由 此进一步说明 Na-Mg 共掺有助于改善薄膜的晶 化,掺 Mg 使 ZnO 禁带宽度增大。当 Na⁺掺杂浓 度为0.02时,由于掺杂浓度过低,Na⁺未能大面 积取代 Zn²⁺成为替代杂质,在 510 nm 附近出现 弱而宽的绿光带,大多数研究者认为510 nm 处的 绿光峰来源于氧空位^[20],即少量的 Na⁺的掺入引 发了 ZnO 薄膜中的点缺陷,但是有效的增加了紫 外发光峰的强度,较未掺杂的 ZnO 其强度增强大 约10倍,使其可以作为较理想的紫外发光材料。

当掺杂浓度为0.04时,除了出现位于379 nm 处 的紫外光发光带,同时也在388 nm 处出现紫光 峰,该发光峰的出现,认为是由 Naz 受主束缚激 子受激跃迁至导带而产生的发光峰。Naza受主的 能级位于价带之上 0.17 eV,本征 ZnO 的禁带宽 度为3.37 eV,即 Naza受主能级与导带底部能级之 差为3.2 eV,该能量差所对应的发光的波长应该 是388 nm。由于这两个峰的位置很近,可认为是 一个宽的紫光峰。没有其它峰的出现,说明在这 种掺杂浓度下,Na⁺的掺入降低了 ZnO 薄膜中的 点缺陷,因为第一性原理计算表明^[1,21],Na 主要 是作为间隙原子(Na;)存在于 ZnO 晶体中, Na 掺 杂后引发受主缺陷, Na 的电负性(0.93)远小于 Zn 的电负性(1.65),因而能"拽住" O^{2-} ,故它的 掺入能有效抑制薄膜中氧空位的产生。而点缺陷 中氧空位是导致 ZnO 绿光发射的主要原因。也 可以看出,掺杂浓度为0.04 的 ZnO 和未掺杂的 ZnO 薄膜的 PL 谱趋势大致相同,这和之前这两种 样品的 XRD 图谱类似是一致的,但是其发光强度 增强了近10倍, 使0.04掺杂浓度下的ZnO薄膜 有更优异的紫光发光性质。掺杂浓度增至0.06 时,出现了位于380 nm 的紫光发射峰,证实了位 于380 nm 的峰确与 ZnO 中激子复合有关,此外 出现了中心位于501 nm 几乎与紫光峰相同强度 的宽的绿光峰。根据 0.06 的 SEM 图像所观察到

图 3 室温下纯 ZnO 和不同掺杂浓度 ZnO 的光致发光 (PL)谱(a) ZnO;(b) Mg_{0.2}Zn_{0.8}O;(c) Na_{0.02}Mg_{0.2}-Zn_{0.78}O;(d) Na_{0.04} Mg_{0.2} Zn_{0.76}O;(e) Na_{0.06} Mg_{0.2}-Zn_{0.74}O_o

的,分析其原因是随着 Na⁺浓度的增加,有 NaCl 晶体析出,降低了晶格中 Na⁺浓度,无法降低薄膜 中的氧空位导致了绿光峰的强度增加。

3.3 透射谱

图 4 是用分光光度计(UV-3600)在 350~ 1 000 nm波长范围内测量了不同掺杂浓度的 ZnO 薄膜的透射谱。由图可以看出:薄膜在可见光区 有大于 75% 的透过率,随着 Na⁺掺杂浓度的增 加,薄膜的透光率降低,这是由于溶胶浓度大则单 层膜厚度比较大,相应的膜厚度会增大,降低了可 见光的透射率。在紫外区,由于 ZnO 薄膜的光学 带隙所致,透射率急剧下降,入射波长小于 380 nm 后,透过率急剧下降,形成陡峭的吸收边。

图 4 未掺杂 ZnO 和 Na_xMg_{0.2}Zn_{1-x}O 薄膜的透射光谱 Fig 4 The transmission spectra of ZnO and Na_xMg_{0.2}Zn_{1-x}O films

4 结 论

利用溶胶-凝胶法在普通玻璃衬底上制备了 未掺杂的 ZnO、只掺 Mg 和 Na-Mg 共掺的 ZnO 薄 膜。得到以下结论:(1)通过分析薄膜的结构特 性和表面形貌,观测到 Na-Mg 共掺杂促进了薄膜 的 c 轴取向生长,薄膜表面均匀,颗粒致密,随着 Na⁺浓度的增大,晶体颗粒先增大后减小。(2)用 PL 和透射对其光学性质进行表征,推测发光中心 位于 380 nm 的紫外发射与 ZnO 的自由激子复合 有关,发现了掺入 Mg 的确能使 ZnO 禁带宽度增 大,且当 Na⁺掺杂浓度为 0.04 时,其近带边紫外 光发射发光强度较未掺杂的 ZnO 增强了近 10 倍,极大地提高了薄膜紫外发光性能;(3)随 Na⁺ 掺杂量的增加,由于溶胶浓度大则膜厚会增大导 致其透光性减弱。

参考文献:

- [1] Ozgur U, Alivov Y I, Liu C. A comprehensive review of ZnO materials and devices [J]. Appl. Phys., 2005, 98(4): 041301-1-3.
- [2] lingshim K C. The luminescence of ZnO under high one-and two-quantum excitation [J]. Phys. Stat. Sol. B, 1975, 71 (2):547-559.
- [3] Wang Jingwei, Bian Jiming, Liang Hongwei, *et al.* The effect of Ag doping on the optical and electrical properties of ZnO films [J]. *Chin. J. Lumin.* (发光学报), 2008, **29**(3):460-464 (in Chinese).
- [4] Peng X P, Lan W, Tan Y S, et al. Photoluminescent properties of Cu doped ZnO thin films [J]. Acta Phys. Sin. (物理 学报), 2004, 53:2705-2709 (in Chinese).
- [5] Xie Lunjun, Chen Guangde, Zhu Youzhang, *et al.* Photoluminescence characteristics of ZnO film grown by laser-MBE method [J]. *Chin. J. Lumin.* (发光学报), 2006, 27(2):215-220 (in Chinese).
- [6] Zhang Liting, Wei Ling, Zhang Yang, et al. Microstructure and photoluminescence properties of ZnO thin films and effect of post-annealing [J]. Chin. J. Lumin. (发光学报), 2007, 28(4):561-565 (in Chinese).
- [7] Lidia A, Monica F, Stefano G, et al. Sol-gel synthesis and characterization of ZnO-based nano-systems [J]. Thin Solid Flims, 2001, 394(1-2):90-95.
- [8] Srinivasan G, Kumar J. Optical and structural characterization of zinc oxide thin films prepared by sol-gel process [J]. Crystal Research Technology, 2006, 41(9):893-896.
- [9] Kim H, Gilmore C M, Horwitz J S, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic lightemitting devices [J]. Appl. Phys. Lett., 2000, 76(3):259-261.
- [10] Komaru T, Shimizu S, Kanbem, et al. Optimization of transparent conductive oxide for improved resistance to reactive and high temperature optoelectronic device processing [J]. Jpn. J. Appl. Phys. Part 1, 1999, 38(10):5796-5804.
- [11] Naghavi N, Dupontl, Marcel C, et al. Systematic study and performance optimization of transparent conducting indiumzinc oxides thin films [J]. Electrochimica Acta, 2001, 46(13-14):2007-2013.
- [12] Ohtomo A, Kawasaki M, Koida T, et al. Mg_xZn_{1-x}O as a II-VI wide gap semiconductor alloy [J]. Appl. Phys. Lett., 1998, **72**(19):2466-2470.
- [13] Jin X L, Lou S Y, Kong D G, et al. Investigation on the broadening of band gap of wurtzite ZnO by Mg-doping [J]. Acta Phys. Sin. (物理学报), 2006, 55(9):4809-4814 (in Chinese).
- [14] Li Y W, Lin C F, Zhou X, et al. Structural and electrical properties of Na⁺-doped ZnO thin films [J]. Materials for Mechanical Engineering (机械工程材料), 2007, 31(8):15-18 (in Chinese).
- [15] Gonales C, Block D, Cox R T. Magnetic resonance studies of shallow donors in zinc oxide [J]. J. Crystal Growth, 1982, 59(1-2):357-362.
- [16] Wang X H, Yuan Y H, Sun Z W, et al. The fabrication of p-type ZnO film doped by lithium [J]. J. Shanghai Dianji University (上海电机学院学报), 2007, 10(3):237-239 (in Chinese).
- [17] Hu J B. Crystal structures and luminescence properties of ZnO thin films doped with Mg prepared by sol-gel method [J]. J. Xiangfan University (裏樊学院学报), 2008, 29(2):23-25 (in Chinese).
- [18] Wang Y, Li W, Zhao W G, et al. Structure and electrical characteristics of ZnO thin films doped with Na-Mg [J]. J. Shanghai University (上海大学学报:自然科学版), 2006, (12):604-609 (in Chinese).
- [19] Qiu D J, Wu H Z, Feng A M, et al. Annealing effects on the microstructure and photoluminescence properties of Ni-doped ZnO films [J]. Appl. Surf. Sci., 2004, 222(1-4):263-268.
- [20] Kang J S, Kang S H, Pang S S, et al. Investigation on the origin of green luminescence from laser-ablated ZnO thin film [J]. Thin Solid Films, 2003, 443(1-2):5-8.
- [21] Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective [J]. Phys. Rev. B, 2002, 66(7):073202-1-3.

Structural and Optical Properties of Na-Mg Co-doped ZnO Film

SUO Ya-qin, LIU Su, LIU Feng-qiong, YIN Xiao-li, YAN Xin, CHANG Jiang

(School of Physics, Lanzhou University, Lanzhou 730000, China)

Abstract: The Na-Mg co-doped hexagonal wurtzite thin ZnO film with the *c*-axis (002) preferred orientation were fabricated on lime-glass substrate by sol-gel spin coating method. The phase structural characteristics and surface morphology as well as optical properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) and transmittance, respectively. The results showed that Na-Mg co-doping is propitious to the ZnO film growth along the *c*-axis. The crystal size is influenced by the increase amount of Na content. Proved the ultraviolet emission peak at 380 nm is from the recombination luminescence for exciton energy levels, and found that Mg doped ZnO can make band gap increase indeed. The PL spectrum of Na_{0.04}Mg_{0.2}Zn_{0.76}O has only one violet emission peak, and the transmittance and the band-gap of the Na-Mg co-doped ZnO films are decreased with the increasing of Na content.

Key words:ZnO thin film; Na-Mg co-doping; sol-gel method; photoluminescenceCLC number:0472.3; 0482.31PACS: 78.55. EtPACC: 7855Document code: A