2010年4月

文章编号:1000-7032(2010)02-0199-05

射频反应磁控溅射法退火生长 Na-N 共掺杂 p-ZnO 薄膜

林 兰,叶志镇*,龚 丽,别 勋,吕建国,赵炳辉 (浙江大学硅材料国家重点实验室,浙江杭州 310027)

摘要:采用射频反应磁控溅射法退火生长得到了 Na-N 共掺杂 p-ZnO 薄膜。XRD 测试结果表明,退火前后均得到 *c* 轴择优取向的 ZnO 薄膜。Hall 测试结果表明:退火后薄膜的电学性能明显改善,得到了 p-ZnO 薄膜,退火温度为 450 ℃时取得最佳电学性能:室温电阻率为 139.2 Ω · cm,迁移率为 0.2 cm² · V⁻¹ · s⁻¹,空穴浓度为 2.5 × 10¹⁷ cm⁻³。XPS 分析表明:Na 掺入 ZnO 中作为受主 Na_{Zn}而存在,N 主要以 N—H 键的形式存在,其受 主 N₀ 的作用不明显,但是否存在 Na_{Zn}-N₀ 受主复合体,还需进一步的研究。

关 键 词:射频反应磁控溅射; Na-N 共掺; p 型 ZnO 薄膜; 退火 中图分类号: 0484.1; 0472.4 PACS; 81.15. Cd; 72.20. Jv PACC; 8115C; 7220J 文献标识码; A

1引言

ZnO 是一种直接带隙宽禁带半导体,室温下 禁带宽度为3.37 eV,激子束缚能为60 meV,使得 ZnO 在紫外探测器、LDs、LEDs 等光电器件上的应 用前景十分光明^[1]。制备可控的 n 型和 p 型 ZnO 晶体薄膜是实现 ZnO 基光电器件应用的关键。 目前,人们对于 n-ZnO 晶体薄膜的研究已经比较 充分,通过掺杂 Al、Ga、In 等施主元素^[2~4],已经 能够获得具有优异性能的 n-ZnO 晶体薄膜。然 而,ZnO 的 p 型掺杂却遇到诸多困难,这主要是由 于受主掺杂元素在 ZnO 中的固溶度很低,受主能 级一般很深,而且 ZnO 本身存在着诸多本征施主 缺陷(如间隙锌 Zn_i 和空位氧 V_o),对受主会产生 高度的自补偿效应。如何实现具有优异性能的 p-ZnO 薄膜的实时掺杂已成为目前制约 ZnO 基光 电器件发展的一个瓶颈。

目前,国际上所报道 p-ZnO 的掺杂元素主要 集中在单受主掺杂,例如 Li^[5]、N^[6~8]、P^[9~12]、 As^[13~15]、Sb^[16]等,或者将Ⅲ-V族元素进行施主-受主掺杂,例如 Al-N^[17]、Ga-N^[18]、In-N^[19~21]共掺 杂等。本课题组还报道了 I-V元素进行双受主 掺杂:Li-N 共掺杂^[22,23]。在 Li-N 共掺杂时,由于 Li 原子半径比较小,容易占据间隙位置而成为施 主。相对于 Li 而言, Na 原子半径较大, 不易形成 Na_i、Na_{Zn}-Na_i、Na_{Zn}-H 复合体^[24]。本课题组已经 报道了采用 Na 元素掺杂制备 p-ZnO 薄膜^[25,26], 为Na-N共掺制备 ZnO 薄膜提供了一定的理论依 据, 而且目前还没有关于 Na-N 共掺杂的报道, 更 需要对这一课题进行研究。

本文采用射频反应磁控溅射法,在 N₂O 气氛 保护下,通过改变退火温度,从而得到 Na-N 共掺 杂的 p-ZnO 薄膜,进而研究 Na-N 共掺杂 p-ZnO 薄膜的机理。

2 实 验

采用射频反应磁控溅射法,以 Na 含量为0.5% 的 Na₂O-ZnO(99.99%)陶瓷靶为靶材,以玻璃为 衬底。将衬底清洗后放入射频反应磁控溅射装置 的反应室中,反应室真空度抽至2.5×10⁻³ Pa,以 高纯 N₂O(99.99%)和高纯 Ar(99.99%)为溅射 气氛,其中 N₂O 作为 N 源和 O 源, N₂O 分压为 2.1 Pa,生长温度为 500 ℃,溅射功率为 300 W, 生长时间为 30 min。生长结束后,将样品在 N₂O 气氛下进行退火,其中退火温度分别为 400,450, 500 ℃,退火压强为 10 Pa,退火时间为 30 min。

利用 Van der Pauw(HL5500PC)霍尔测试仪 对 ZnO 薄膜的电学性能在室温下进行测试;利用

收稿日期: 2009-11-25;修订日期: 2010-01-10

基金项目:国家自然科学基金重点(50532060);高等学校博士学科点专项科研基金(20060335087)资助项目

作者简介:林兰(1984-),女,湖北襄樊人,主要从事 ZnO 薄膜的研究。 E-mail; lanlin9@ sina. com, Tel;(0571)87952484

^{*:}通讯联系人; E-mail: yezz@zju.edu.cn, Tel: (0571)87952625

X'Pert PRO (PANalytical)型X 射线衍射仪 (Cu Kα, λ = 0.154 1 nm)对所得样品进行 XRD 测试; 利用 HITACHI S-4800 扫描电镜对薄膜的表面形 貌进行表征;利用 Thermo ESCALAB 250 (America) 型 XPS(单色 Al Kα, $h\nu$ = 1 486.6 eV,功率 150 W, 束斑 500 µm,能量分析器固定透过能为 20 eV)进 行元素化学位分析。

3 结果与讨论

表1给出了在不同退火温度下的 ZnO: (Na, N) 薄膜的电学性能。原位生长的 ZnO: (Na, N) 薄 膜显示出很高的电阻率,其晶体质量较差,电学性 能很难测出,导电类型不明确。退火温度为400 ℃ 时,薄膜显示出很高的电阻率,低载流子浓度和不 明确的导电类型。当退火温度升高至450℃时,薄 膜为 p 型,推测是因为薄膜内存在 Naza、No 受主或 Naz-No 受主复合体。两周后再次对样品进行 Hall 测试,其电学性能得到改善,退火温度为450℃时 取得最佳电学性能,室温电阻率为139.2 Ω ·cm, 迁移率为0.2 cm² · V⁻¹ · s⁻¹, 空穴浓度为2.5 × 10¹⁷ cm⁻³。但当退火温度再升高至 500 ℃时,薄膜 转变为n型,这可能是因为温度过高,杂质原子获 得了过多的能量,容易离开原来的晶格位置,可能 会聚集到薄膜表面,甚至从薄膜表面逃逸,不能再 作为受主对 p 型导电有贡献。

表1 ZnO: (Na, N) 薄膜的电学性能随退火温度的变化 Table 1 Electrical properties of ZnO: (Na, N) films with various annealing temperatures

退火温度	电阻率 (Ω・cm)	迁移率 (cm ² ·V ⁻¹ ·s ⁻¹)	载流子浓度 (cm ⁻³)	导电 类型
As-grown	9.8×10^4	-	-	?
400 °C	9.8 × 10^4	-	-	?
450 ℃	268.5	0.5	4.9×10^{16}	р
500 °C	5.3×10^{-2}	6.7	-1.8×10^{19}	n
450 ℃	139.2	0.2	2.5×10^{17}	р
(两周后)				•

图1显示了原位生长的ZnO:(Na,N)薄膜与 不同退火温度下ZnO:(Na,N)薄膜的XRD 谱图。 由图中可以看出,仅有ZnO(002)衍射峰,而没有与 Na、N相关相的衍射峰出现,说明薄膜具有良好的 *c*轴择优取向性。随退火温度的升高,ZnO:(Na, N)薄膜的2θ值随退火温度的升高而增加,衍射峰 强度增强;但退火温度为500 ℃时的衍射峰强度低 于450 ℃时的衍射峰强度,这可能是因为温度过 高,杂质原子获得了过多的能量,容易离开原来的 晶格位置,从而导致薄膜晶体质量变差。

图 1 不同退火温度下生长的 ZnO: (Na, N)薄膜的 XRD 谱 Fig. 1 XRD patterns of ZnO: (Na, N) films with various annealing temperatures

图 2 显示了原位生长的 ZnO:(Na, N)薄膜 与不同退火温度下 ZnO:(Na, N)薄膜的晶粒尺 寸和 XRD 峰的半峰全宽随退火温度的变化。对 于原位生长的 ZnO:(Na, N)薄膜,其 20 值为 34.23°,这个值比退火后的薄膜和粉末 ZnO 样品 的衍射峰位都要小。根据 Scherrer 公式^[27,28]:

$$D = 0.9\lambda/B\cos\theta \tag{1}$$

其中D是晶粒尺寸,λ是X射线波长,B是衍射峰 的半峰全宽,θ为Bragg衍射角。随退火温度的升 高,(002)衍射峰2θ值增大,半峰全宽先变小后 增大,当退火温度为450℃时,半峰全宽有最小 值,晶粒尺寸最大,薄膜的晶体质量最好。

图 3 显示了原位生长的 ZnO: (Na, N)薄膜 与不同退火温度下 ZnO: (Na, N)薄膜的 SEM 图。

图 2 ZnO: (Na, N)薄膜的晶粒尺寸和半峰全宽随退火 温度的变化

Fig. 2 Grain size (D) and FWHM of ZnO: (Na, N) films with various annealing temperatures

- 图 3 不同退火温度下生长的 ZnO: (Na, N) 薄膜的 SEM 图: (a) as-grown; (b) 400 °C; (c) 450 °C; (d) 500 °C。
- Fig. 3 SEM images of ZnO: (Na, N) films with various annealing temperatures: (a) as-grown; (b) annealed at 400 ℃; (c) 450 ℃ and (d) 500 ℃.

图 3(a)、(b)中,晶粒的形状和大小不均匀,而且 (a)比(b)要严重得多,说明未退火或退火温度较 低时,吸附在衬底上的原子获得的能量比较低,其 扩散长度比较短,不易扩散到合适的成核位置,很 容易就近成核,导致此时获得的晶粒形状和尺寸 不均匀。图 3(c)中薄膜的表面比较平滑,晶粒尺 寸也比较均匀,晶体质量最好。图 3(d)中,薄膜 的晶界有粗化现象,薄膜晶体质量变差,可能是由 于退火温度较高引起的,与图 1 的 XRD 图相符。 但是,由表1中得知,退火温度为500℃时的载流 子迁移率比450℃时的迁移率要大得多,这可能 是因为在该温度范围内,杂质散射起主要作用,载 流子迁移率随温度的升高而增大。

图 4 显示了退火温度为 450 ℃时 ZnO: (Na, N)薄膜的 XPS 谱图。如图 4(a)所示,Na 1s 的峰 位出现在 1 071.7 eV 处,对应于 Na—O 键^[29],这 说明 Na 掺入 ZnO 中时替代了晶格位置的 Zn 而 作为受主 Na_{Zn}。图 4(b)中,N 1s 峰分别出现了 395.0,399.9,402.4 eV 三个峰值。位于 399.9 eV 的峰在 N 1s 的三个峰位中占据主要地位,其 峰值近似于 N—H 键的结合能^[30],推测该峰应该 是 N—H 键;位于 395.0 eV 的峰与 Zn—N 键 (N)₀^[31]的结合能相近,N 取代了晶格 O 的位置, 作为受主存在,该键的存在与薄膜显示出来的 p 型有关系。位于 402.4 eV 的峰可能与(N₂)₀有 关^[29],(N₂)₀表示 N₂ 分子替代了 O 的位置而作 为施主存在。由图 4(b) 可以看出,受主(N)₀ 的 面积大于施主(N₂)₀ 的面积,受主(N)₀ 产生的 空穴大部分会被施主(N₂)₀ 产生的电子所补偿, 所以推测 p-ZnO: (Na, N)薄膜并不是由(N)₀ 而 引起的。考虑到 Na_{Zn}、(N)₀ 同时作为受主,我们 可以推测是因为存在 Na—N 受主复合体,从而实 现了 p-ZnO: (Na, N)薄膜。

图 4 退火温度为 450 ℃ 时 p 型 ZnO: (Na, N)薄膜的 XPS 谱图: (a) Na 1s;(b) N 1s。

Fig. 4 XPS spectra of Na 1s (a) and N 1s (b) of the ptype ZnO: (Na, N) annealed at 450 °C

4 结 论

采用射频反应磁控溅射法,在 N_2O 气氛保护 下退火生长了 Na-N 共掺杂 p-ZnO 薄膜。XRD 测 试结果表明:退火前后均得到 c 轴择优取向的 ZnO 薄膜,退火后(002)峰的峰强增大,2 θ 值增 大,半峰全宽变小。退火温度为 450 ℃时取得最 佳电学性能,室温电阻率为 139.2 Ω · cm,迁移率 为 0.2 cm² · V⁻¹ · s⁻¹,空穴浓度为 2.5 × 10¹⁷ cm⁻³。XPS 分析表明,Na 掺入 ZnO 中时作为受 主 Na_{Zn}而存在,这是获得 p-ZnO 的主要因素;N 主 要以 N—H 键的形式存在,其受主 N₀ 的作用不明 显,但是也有可能存在 Na_{Zn}-N₀ 受主复合体,还需 要进一步的研究。

参考文 献:

- [1] Krtschil A, Dadgar A, Oleynik N, et al. Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic
 [J]. Appl. Phys. Lett., 2005, 87(26):262105-1-3.
- [2] Kim H, Gilmore C M, Horwitz J S, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic lightemitting devices [J]. Appl. Phys. Lett., 2000, 76(3):259-261.
- [3] Ramakrishna Reddy K T, Gopalaswamy H, Reddy P J, et al. Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis [J]. J. Crystal Growth, 2000, 210(4):516-520.
- [4] Nunes P, Fortunato E, Martins R. Influence of the post-treatment on the properties of ZnO thin films [J]. Thin Solid Films, 2001, 383(1-2):277-280.
- [5] Zeng Y J, Ye Z Z, Xu W Z, et al. Dopant source choice for formation of p-type ZnO: Li acceptor [J]. Appl. Phys. Lett., 2006, 88(6):062107-1-3.
- [6] Look D C, Reynolds D C, Litton D C, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2002, 81(10):1830-1832.
- [7] Lu J G, Zhang Y Z, Ye Z Z, et al. p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations [J]. Mater. Lett., 2003, 57(22-23):3311-3314.
- [8] Barnes T M, Olson K, Wolden C A. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2005, 86(11):112112-1-3.
- [9] Hwang D K, Kim H S, Lim J H, et al. Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering [J]. Appl. Phys. Lett., 2005, 86(15):151917-1-3.
- [10] Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant [J]. Appl. Phys. Lett., 2003, 83(1):63-65.
- [11] Chen Z Q, Kawasuso A, Xu Y, et al. Production and recovery of defects in phosphorus-implanted ZnO [J]. J. Appl. Phys., 2005, 97(1):013528-1-6.
- [12] Wang P, Chen N F, Yin Z G. P-doped p-type ZnO films deposited on Si substrate by radio-frequency magnetron sputtering
 [J]. Appl. Phys. Lett., 2006, 88(15):152102-1-3.
- [13] Ryu Y R, Lee T S, White H W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J]. Appl. Phys. Lett., 2003, 83(1):87-89.
- [14] Look D C, Renlund G M, Burgener R H II, et al. As-doped p-type ZnO produced by an evaporation/sputtering process [J]. Appl. Phys. Lett., 2004, 85(22):5269-5271.
- [15] Vaithianathan V, Lee B T, Kim S S. Preparation of As-doped p-type ZnO films using a Zn₃As₂/ZnO target with pulsed laser deposition [J]. Appl. Phys. Lett., 2005, 86(6):062101-1-3.
- [16] Xiu F X, Yang Z, Mandalapu L J, et al. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 87(15):152101-1-3.
- [17] Ye Z Z, Zhu Ge F, Lu J G, et al. Preparation of p-type ZnO films by Al-N codoping method [J]. J. Crystal Growth, 2004, 265(1-2):127-132.
- [18] Joseph M, Tabata H, Kawai T. p-type electrical conduction in ZnO thin films by Ga and N codoping [J]. Jpn. J. Appl. Phys., 1999, 38(9):L1205-L1207.
- [19] Chen L L, Ye Z Z, Lu J G, et al. Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films [J]. Appl. Phys. Lett., 2006, 89(25):252113-1-3.
- [20] Sun Jianwu, Lu Yoming, Liu Yichun, *et al.* Hole scattering mechanisms in nitrogen-doped p-type ZnO films grown by plasma assisted molecular bean epitaxy [J]. *Chin. J. Lumin.* (发光学报), 2008, **29**(3):437-430 (in Chinese).
- [21] Liu Xuedong, Gu Shulin, Li Feng, et al. The effect of carricer gas H₂ used during MOCVD-growth on the properties of N-doped ZnO [J]. Chin. J. Lumin. (发光学报), 2008, 29(3):441-446 (in Chinese).
- [22] Lu J G, Zhang Y Z, Ye Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method [J]. Appl. Phys. Lett., 2006, 88(22):222114-1-3.
- [23] Wang X H, Yao B, Wei Z P, et al. Acceptor formation mechanisms determination from electrical and optical properties of

p-type ZnO doped with lithium and nitrogen [J]. J. Phys. D: Appl. Phys., 2006, 39(21):4568-4571.

- [24] Wardle M G, Goss J P, Briddon P R. Theory of Li in ZnO: A limitation for Li-based p-type doping [J]. Phys. Rev. B, 2005, 71(15):155205-1-10.
- [25] Lin S S, Lu J G, Ye Z Z, et al. p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes [J]. Solid State Communications, 2008, 148(1-2):25-28.
- [26] Lin S S, Ye Z Z, Lu J G, et al. Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate [J]. J. Phys. D: Appl. Phys., 2008, 41(15):155114-1-6.
- [27] Szyszka B. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering [J]. Thin Solid Films, 1999, 351(1-2):164-169.
- [28] Gomez H, Maldonado A, Olvera M L, et al. Gallium doped ZnO thin films deposited by chemical spray [J]. Sol. Energy Mater. Sol. Cells, 2005, 87(1-4):107-116.
- [29] Hwang C C, An K S, Park R J, et al. Bonding nature between oxygen and sodium on Si(113) surface [J]. J. Vac. Sci. Technol. A, 1998, 16(3):1073-1077.
- [30] Shatma J, Gora T, Rimstidt J D, et al. X-ray photoelectron spectra of the alkali azides [J]. Chem. Phy. Lett., 1972, 15 (2):232-235.
- [31] Perkins C L, Lee S H, Li X, et al. Identification of nitrogen chemical states in N-doped ZnO via X-ray photoelectron spectroscopy [J]. J. Appl. Phys., 2005, 97(3):034907-1-7.

Fabrication of Na-N Codoped p-type ZnO Films by RF Reactive Magnetron Sputtering and Post-annealing

LIN Lan, YE Zhi-zhen, GONG Li, BIE Xun, LU Jian-guo, ZHAO Bing-hui (State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China)

Abstract: Na-N co-doped p-type ZnO [ZnO: (Na, N)] thin films were prepared on glass substrates by RF reactive magnetron sputtering and post-annealing techniques in the N₂O ambient. X-ray diffraction (XRD) measurements showed that all films possessed a good crystallinity with *c*-axis preferential orientation. After annealing, the intensity of the (002) diffraction peak and the value of 2θ increase and the FWHM decreases. Hall measurements showed that the electrical properties of ZnO: (Na, N) films were improved after annealing and the p-type behavior was realized. The film annealed at 450 °C showed the lowest resistivity of 139.2 $\Omega \cdot$ cm with a Hall mobility of 0.2 cm² · V⁻¹ · s⁻¹ and a carrier concentration of 2.5 × 10¹⁷ cm⁻³. XPS measurements showed that Na_{zn} acceptor in ZnO: (Na, N) is responsible for the p-type conductivity of the ZnO: (Na, N). In addition, Na-N complex may exist in the films, which acts as acceptor. Detailed investigation is now in progress.

Key words:RF reactive magnetron sputtering;Na-N co-doping;p-type ZnO films;post-annealingCLC number:0484.1;0472.4PACS:81.15. Cd;72.20. JvPACC:8115C;7220JDocument code:A