2010年2月

文章编号:1000-7032(2010)01-0039-05

一种适用于近紫外光 LED 激发的单一相白光发光粉

严小松,李万万,刘 霁,孙 康*

(上海交通大学 金属基复合材料国家重点实验室,上海 200240)

摘要:采用高温固相法合成了一种单一相 LiCa₃MgV₃O₁₂: Eu³⁺ 白光发光粉,研究了不同的合成温度和不同 Eu³⁺ 掺杂浓度等条件对其发光性能的影响。该发光粉在近紫外光激发下呈现由两个谱带组成的发射光谱, 分别是峰值为 530 nm 的[VO₄]³⁻ 的特征宽带和峰值为 610 nm 的 Eu³⁺ 的特征宽带,通过调整合适的 Eu³⁺ 掺杂量它们可混合成白光,当 Eu³⁺ 掺杂摩尔分数为 0.01 时,发光粉的色品坐标为(x = 0.33, y = 0.34), 显色指数为 87。该发光粉可和具有近紫外光发射的 InGaN 管芯配合制得白光 LED,极具应用价值。

关 键 词:发光粉;近紫外激发;白光 LED中图分类号:0482.31PACS:78.55.Hx

1引言

半导体发光二极管(LED)由于其节能、环保、 使用寿命长、体积小、耐冲击等优异的性能而被人 们看成是继白炽灯、荧光灯和高压气体放电灯之 后第四代照明光源,因此白光 LED 作为照明光源 极具潜力。目前,商用白光 LED 是将发射黄光的 Y₃Al₅O₁₂: Ce³⁺(YAG: Ce³⁺)作为发光粉,涂敷在 发射蓝光的 InGaN 二极管上,由黄光和蓝光混合 制造出白光 LED。其白光是由发光粉的黄色荧 光与 LED 芯片的蓝光混合而成。由于器件的发 光颜色随驱动电压和荧光粉涂层厚度等的变化而 变化^[1],因此在工业生产中要制造出性能稳定的 白光 LED 十分困难。

为解决上述问题,采用近紫外光 InGaN 管芯 激发三基色荧光粉实现白光 LED 是一种较好的 替代方案^[5]。由于近紫外光对肉眼不可见,这类 白光 LED 的颜色只由荧光粉决定。然而如果采 用多相荧光粉来实现白光,则荧光粉混合物之间 将存在颜色再吸收和配比调控问题,流明效率和 色彩还原性能受到较大影响,因此,在单一基质中 实现白光发射具有重要的意义。

在此前的研究中,Bayer等^[6]报道了一系列具有和 YAG 石榴石相同结构的钒酸盐 LiCa₃MV₃O₁₂

PACC: 3250F; 7855 文献标识码: A

(M = Mg, Cu, Zn, Co, Ni)。Blasse 等^[7] 报道了具 有与其相同结构的 NaCa₂Mg₂V₃O₁₂在 Eu³⁺离子激 活下的光谱特性,并证明了[VO₄]³⁻到 Eu³⁺的能 量转移。最近,我们开展了白光 LED 用发光粉的 研究,研制出了一种适于近紫外光激发的单一相 白光发光粉 LiCa₃MgV₃O₁₂: Eu³⁺。它在近紫外光 激发下利用[VO₄]³⁻的峰值为 530 nm 的特征宽 带谱和 Eu³⁺的峰值为 610 nm 的特征发射谱可混 合成白光。本文主要对不同的合成温度和不同 Eu³⁺掺杂浓度等反应条件与发光粉的结构性能 和发光性质的关系进行了研究。

2 实 验

采用高温固相反应法在空气中制备得到 LiCa₃MgV₃O₁₂: Eu³⁺粉末。所用原料有 CaCO₃(分 析纯)、Li₂CO₃(分析纯)、MgO(99.99%)、 NH₄VO₃(分析纯)和 Eu₂O₃(99.99%)。按所设 计材料的化学计量比,称取以上原料,在玛瑙研钵 中研磨均匀后,置入刚玉坩埚中,利用高温固相反 应,在700~1000 ℃温度范围内分别烧结8~10 h 取出,粉碎后即可得到所需的不同 Eu³⁺含量的 单一相发光粉样品,供表征和分析测试使用。

采用德国 BRUKER 公司 BRUKER-AXS 型 X

收稿日期: 2009-01-25;修订日期: 2009-06-24

基金项目:国家自然科学基金(950902093)资助项目

作者简介:严小松(1982-),男,湖北人,博士研究生,主要从事稀土发光材料的研究。

E-mail: yxs_912@ sjtu. edu. cn

^{*:}通讯联系人; E-mail: ksun@ sjtu.edu.cn, Tel: (021)34202743

射线粉末衍射仪测定样品的粉末衍射图。采用日本岛津 RF-2550 荧光分光光度计测量样品的激发和发射光谱。采用浙大三色公司 SPR-920 荧光辐射仪测量样品发光的色品坐标和显色指数。所有测量均是在室温下进行。

3 结果与讨论

3.1 LiCa₃MgV₃O₁₂:Eu³⁺粉末样品的结构

图 1 是分别在 700,800,900,1 000 ℃下烧结 所制备 Li_{1.01}Ca_{2.98}Eu_{0.01} MgV₃O₁₂粉末样品的 X 射 线衍射图。由图可见,当温度为 700 ℃时,虽然有 LiCa₃MgV₃O₁₂: Eu³⁺相衍射峰的存在,但伴随着很 多杂峰,说明在这个温度下的烧结产物不纯;当烧 结温度达到 800,900 ℃时,LiCa₃MgV₃O₁₂: Eu³⁺相 衍射峰的位置和衍射强度基本一致,且杂峰较少, 表明在此温度范围内可以形成稳定的单一相。当 继续升温到 1 000 ℃,原有单一相的各衍射峰虽 然仍然存在,而在 2 θ = 32°左右的杂相峰又变得 明显起来,这可能是由于温度过高产生了熔融现 象,导致产物不纯。

图 2 是在 900 ℃ 下烧结所制备 $Li_{1.01} Ca_{2.98}$ -Eu_{0.01} MgV₃O₁₂ 粉末样品的 X 射线衍射图与标准 粉末衍射卡片的对比。可以发现,900 ℃ 下烧结 所制备 $Li_{1.01} Ca_{2.98} Eu_{0.01} MgV_3 O_{12} 粉末样品的 XRD$ 衍射峰数据(图 b)与 JCPDS 卡片 24-1212 卡片数据(图 a) 一致,表明所制得的样品为纯的单一相LiCa₃ MgV₃O₁₂ 晶体。根据 JCPDS 卡片 24-1212,LiCa₃ MgV₃O₁₂ 力石榴石结构,属于立方晶系,晶格常数 <math>a = 1.2415 nm, b = 1.2415 nm, c = 1.2415 nm。

图 1 不同温度烧结的 Li_{1.01} Ca_{2.98} Eu_{0.01} MgV₃O₁₂样品的 X 射线衍射图

Fig. 1 XRD patterns of $\operatorname{Li}_{1.01} \operatorname{Ca}_{2.98} \operatorname{Eu}_{0.01} \operatorname{MgV}_3 \operatorname{O}_{12}$ sintered at different temperatures: (a) 700 °C; (b) 800 °C; (c) 900 °C; (d) 1 000°C.

- 图 2 900 ℃烧结 Li_{1.01}Ca_{2.98}Eu_{0.01}MgV₃O₁₂的 X 射线衍射 图(b)与标准卡片(a)的比较
- Fig. 2 XRD patterns of standard card (a) and $\rm Li_{1.01}\,Ca_{2.98}$ $\rm Eu_{0.01}\,MgV_3O_{12}(b)$

可见,少量 Eu³⁺离子的掺杂对晶格结构影响不大,没有改变 LiCa₃MgV₃O₁₂的晶体结构。

3.2 LiCa₃MgV₃O₁₂:Eu³⁺粉末样品的发光性质

图 3 给出的是不同温度下烧结所得到的 Li_{1.01}Ca_{2.98} Eu_{0.01} MgV₃O₁₂ 的发射光谱(λ_{ex} = 365 nm)。可以看出样品在 365 nm 紫外光的激发下 均可以发出位于可见光区的辐射,其发射光谱由 两个发射带组成,分别是峰值为 530 nm 的发射带 和峰值为 610 nm 处发射带,这两个发射带可分别 归结为[VO₄]³⁻离子和 Eu³⁺离子发射。

Fig. 3 Emission spectra of $\operatorname{Li}_{1.01} \operatorname{Ca}_{2.98} \operatorname{Eu}_{0.01} \operatorname{MgV}_3 \operatorname{O}_{12}$ sintered at different temperatures: (a) 700 °C; (b) 800 °C; (c) 900 °C; (d) 1 000 °C.

峰值为 530 nm 的发射谱带与 $(VO_4)^{3-}$ 配位 四面体中 $O^{2-}2p \rightarrow V^{5+}3d$ 的电荷转移带(CTBs)相符,因而归结于 VO_4^{3-} 的发射。掺杂 Eu^{3+} 离子 进入基质 $LiCa_3MgV_3O_{12}$ 晶格后,替位 Li^+ 或 Ca^{2+} 产生一组尖锐的发射峰,它们属于 Eu^{3+} 的⁵D \rightarrow ⁷F 跃迁特征发射谱带。一般认为: Eu^{3+} 离子荧光发 射与其周围离子配位环境密切相关,当 Eu^{3+} 在基 质晶体中占据对称中心的格位时,发光中心为 ${}^{5}D_{0}$ → ${}^{7}F_{1}$ 磁偶极允许的跃迁,波长为 593 nm,发光 颜色为橙红色;如果 Eu³⁺在晶体中占据非对称中 心的格位, 宇称选择定则可能发生松动, 结果 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ 变成电偶极允许的跃迁,发出波长为 610 nm 纯红色的光。对于 LiCa₃MgV₃O₁²: Eu³⁺, 迁。在 590 nm 附近较弱的峰是由 Eu^{3+} 的⁵D₀ \rightarrow ⁷F₁ 跃迁引起的。位于 610 nm 左右的主峰是由于 Eu^{3+} 的电偶极子的⁵D₀→⁷F₂跃迁引起的,而 650 nm 处的发射峰则与⁵D₀→⁷F₃的跃迁对应。在 Eu³⁺取代 Li⁺或 Ca²⁺的格位的发光光谱中,强电 偶极子⁵D₀ \rightarrow ⁷F₂的跃迁占据主导地位,从而使位 于610 nm 左右的线状发射峰强度相对于其他跃 迁发射峰强度更高,不同于经典的 YAG 石榴石 是因为 Mg²⁺ 和 V⁵⁺ 替换 Al³⁺ 后导致了很强的 O²⁻极化场而造成^[7,8],也有可能是低能量的 VO_4^{3-} 相反的宇称变化增强了⁵D₀ \rightarrow ⁷F₂的跃 $\mathcal{H}^{[9]}$,即Li⁺与Ca²⁺的电荷补偿效应导致了发光 中心的对称性发生了改变所致^[7]。

由于温度对结晶影响较大,将影响基质与掺 杂离子之间的相互作用,从而导致不同烧结温度 下所得样品发光强度产生差异。从图 3 中不同烧 结温度得到样品的发射光谱可以看出,700 ℃时 由于烧结产物不纯,所以辐射强度很弱;随着烧结 温度升高,形成了纯相产物其辐射较强。当温度 达到 1 000 ℃时,荧光的发射强度明显降低,这可 能是因为产生了温度过高引起的熔融现象。以上 结果与样品的 X 射线衍射分析的结果是一致的。

图 4 是不同 Eu³⁺ 掺杂摩尔分数在 900 ℃烧 结所得样品的激发光谱($\lambda_{em} = 610 \text{ nm}$)和发射光 谱($\lambda_{ex} = 365 \text{ nm}$)。可以看出,激发光谱是一宽 带,分布于 250~390 nm 波长范围之内,可分解为 280 nm 和 350 nm 两个激发峰,峰值位于 280 nm 左右的激发峰是 Eu 和其周围的氧原子之间的电 荷迁移形成的(即 CTS 带),而与之前未掺杂 Eu³⁺离子 LiCa₃MgV₃O₁₂的激发光谱($\lambda_{em} = 530$ nm)相比可知峰值位于 350 nm 左右的激发峰是 O²⁻2p→V⁵⁺3d 之间的电荷迁移形成的^[10]。由图 可见,[VO₄]³⁻的激发能带处于主导地位,这可能 导致[VO₄]³⁻到 Eu³⁺的能量转移的存在^[8]。

- 图 4 900 ℃下掺杂不同浓度 Eu³⁺的 LiCa₃MgV₃O₁₂: Eu³⁺ 样品的激发光谱(λ_{em} = 610 nm)和发射光谱(λ_{ex} = 365 nm)
- Fig. 4 Excitation (left, $\lambda_{em} = 610 \text{ nm}$) and Emission (right, $\lambda_{ex} = 365 \text{ nm}$) spectra of LiCa₃MgV₃O₁₂: Eu³⁺ with different Eu³⁺ concentrations sintered at 900 °C

随着 Eu³⁺浓度改变,发射光谱中发射峰的相 对强度发生了较大变化。当 Eu³⁺浓度较小时, 610 nm 处的发光峰的强度与 530 nm 处相当;当 Eu³⁺浓度增加时,[VO₄]³⁻发射强度持续下降,这 同样可能是由于存在[VO₄]³⁻到 Eu³⁺的能量转 移引起的,而 Eu³⁺发射强度先上升,当摩尔分数 超过 0.05 后其发射强度下降,这可能是因为当掺 杂浓度太大时,形成太多的非辐射发光中心发生 了浓度猝灭,降低发光强度。一般来说,对于一定 的激发波长 Eu³⁺吸收很少或者不吸收能量,Eu³⁺ 激活的荧光粉主要是依赖于基质的吸收和能量传 递。在 LiCa₃MgV₃O₁₂: Eu³⁺体系中,[VO₄]³⁻把吸 收的能量传递给 Eu³⁺离子起着重要的作用^[8]。

有相关报道称^[11],[VO₄]³⁻的原有发光光谱 与 Eu³⁺的跃迁引起的发光光谱通过调整之后,可 获得显色指数在 80,色品坐标在(x = 0.38, y =0.41),相对色温为 4 050 K 的荧光粉,这类荧光 粉制得的近紫外激发白光 LED 发光效率可达到 130 lm/W,这些性能指标已经非常接近于传统光 源。由于[VO₄]³⁻和 Eu³⁺所对应的发光带的相 对辐射强度可由[VO₄]³⁻到 Eu³⁺的能量转移所 控制^[8],通过调整 Eu³⁺的含量,可以改变样品在 受近紫外光激发时发射光谱的两个光带的相对辐 射强度从而调整荧光粉的显色性。表1列出了不 同 Eu³⁺掺杂浓度的 LiCa₃MgV₃O₁₂被 365 nm 紫外 光激发所得到的 CIE 色品坐标值,图 5 中可以看 到随着 Eu³⁺掺杂浓度的增加,样品的色品坐标值 (x, y) 非常规律化地从(0.27,0.26) 变化到 (0.46,0.39),其颜色可以从蓝绿色到红色变化, 当 Eu³⁺含量在 0.01 时呈现白色,其显色指数在 87 左右,相对色温为 2 793 K。为了更好地说明 此类荧光粉在制作白光 LED 上的优势,我们比较 了商业化由 460 nm 蓝光 LED 搭配 YAG: Ce 而制 成的白光 LED 的光学性能。传统的白光 LED 由 于是蓝光与黄光复合形成白光,在红光方面显色 较弱,显色指数一般都在75以下,而LiCa,MgV,O12: Eu³⁺中Eu³⁺的⁵D₀→⁷F₂的跃迁所形成的610 nm 的线状荧光发射主峰非常匹配人眼在红光区域的 敏感性曲线,同时也大大提高了制成的白光 LED 的显色指数。由这类荧光粉搭配 365 nm 的近紫 外 LED 的制成的 LED 发光效率也可达到 100 lm/ W。传统白光 LED 随着使用时间的延长, 蓝光芯 片发光出现不稳定,会出现明显的色差;而近紫外 LED 搭配 LiCa₃MgV₃O₁₂: Eu³⁺ 制成的白光 LED 却 不会出现类似问题,因为激发光是不可见的。由 不同 Eu³⁺掺杂浓度的 LiCa₃MgV₃O₁₂样品的 CIE 表1 色品坐标值(激发波长 λ_{em} = 365 nm)

Table 1 Comparison of CIE chromaticity coordinates of LiCa₃MgV₃O₁₂ : Eu³⁺ emission with different Eu³⁺ concentrations ($\lambda_{em} = 365$ nm)

$x_{\rm Eu}$ 3 +	(x,y)
0.005	(0.27,0.26)
0.01	(0.33,0.34)
0.03	(0.42,0.35)
0.05	(0.45,0.36)
0.07	(0.46,0.39)

如上结果可以预测,LiCa₃MgV₃O₁₂:Eu³⁺作为一种 可被近紫外光激发的单一相白光发光粉,在照明 领域具有一定的应用前景。

- 图 5 不同 Eu³⁺ 掺杂摩尔分数的 LiCa₃MgV₃O₁₂样品发光 的 CIE 色坐标
- Fig. 5 CIE chromaticity coordinates of $LiCa_3MgV_3O_{12}$: Eu^{3+} emission with different Eu^{3+} concentrations (a) 0.005; (b)0.01; (c)0.03; (d)0.05; (e)0.07.

4 结 论

我们采用高温固相法在不同温度下合成了 LiCa₃MgV₃O₁₂: Eu³⁺单一相白光发光粉,其中 900 ℃是较好的烧结温度。此荧光粉在近紫外光激发 下呈现由两个谱带组成的发射光谱,分别归结为 [VO₄]³⁻的宽幅发射谱和 Eu³⁺的发射谱,通过调 整 Eu³⁺的掺杂浓度,可调整两个发射谱带的相对 强度,从而可使它们混合形成不同颜色的光。在 Eu³⁺掺杂摩尔分数为 0. 01 时,样品呈现白色。 LiCa₃MgV₃O₁₂: Eu³⁺荧光粉易于制备、成本低廉, 利用该发光粉和具有近紫外光发射的 InGaN 管 芯可制得白光 LED。

参考文献:

- [1] Kim J S, Jeon P E, Choi J C, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba₃MgSi₂O₈: Eu²⁺, Mn²⁺ phosphor [J]. Appl. Phys. Lett., 2004, 84(15):2931-2933.
- [2] Li Huijuan, Shao Qiyue, Dong yan, et al. The thermal quenching of YAG: Ce³⁺ phasphors for white LED application [J]. *Chin. J. Lumin.* (发光学报), 2008, **29**(6):984-988 (in Chinese).
- [3] Li Xu, Yang Yong, Yang Zhiping, *et al.* Fabrication and properties of Eu³⁺ doped La₂Mo₂O₉ red phosphor [J]. *Chin. J. Lumin.* (发光学报), 2008, **29**(1):93-96 (in Chinese).
- [4] Yang Yi, Jin Shangzhong, Shen Changyu, et al. Spectral properties of alckaline earth composite silicate phosphors for white LED [J]. Chin. J. Lumin. (发光学报), 2008, 29(5):800-804 (in Chinese).
- [5] Sato Y, Takahashi N, Sato S. Full-color fluorescent display devices using a near-UV light-emitting diode [J]. Jpn. J. Appl. Phys. Part 2, 1996, 35(7A):L838-L841.
- [6] Bayer G. The reaction of metal carbonyls and amines. I. Iron carbonyl with piperidine and n-butylamine. The initial stages

of the reaction [J]. J. Am. Ceram. Soc., 1965, 48(12):600-605.

- [7] Blasse G, Bri A, Hypersensitivity of the ${}^{5}D_{0}$ - ${}^{7}F_{2}$ transition of trivalent europium in the garnet structure [J]. J. Chem. Phys., 1967, 47(12):5442-5443.
- [8] Blasse B, Bril A. Study of energy transfer from Sb³⁺, Bi³⁺, Ce³⁺ to Sm³⁺, Eu³⁺, Tb³⁺, Dy³⁺ [J]. J. Chem. Phys., 1967, 47(6):1920-1926.
- [9] Judd B R. Optical absorption intensities of rare earth ions [J]. Phys. Rev., 1962, 127(3):750-761.
- [10] Setlur A A, Comanzo H A, Srivastava A M. Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca₂NaMg₂V₃O₁₂: Eu³⁺[J]. J. Electrochem. Soc., 2005, 152(12):H205-H208.
- [11] Srivastava A M, Duggal A R, Comanzo H A, et al. Single phosphor for creating white light with high luminosity and high CRI in a UV LED device: U. S, 6, 522,065 [P]. 2003-02-18.

A Single Phase White-light-emitting Phosphor Suitable for UV-LED Excitation

YAN Xiao-song, LI Wan-wan, LIU Ji, SUN Kang

(State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200240, China)

Abstract: The luminescence of a single phase material $\text{LiCa}_3\text{MgV}_3\text{O}_{12}$: Eu^{3+} are reported and discussed as a potential phosphor excited by UV-LED. The photoluminescence spectra show two bands with peaks at 530 nm and 610 nm, which are attributed to $(\text{VO}_4)^{3-}$ and Eu^{3+} , respectively. By mixing the colors of the two bans, the (x,y) coordinates vary systematically due to the different Eu^{3+} concentration. When the mol fraction of Eu^{3+} is 0.01, the (x,y) coordinate is (0.33, 0.34). This single phosphor is capable of converting the ultraviolet emission of a UV-LED into white light-emitting.

Key words: phosphor; near UV excitation; white-light-emitting diodeCLC number: 0482.31PACS: 78.55. HxPACC: 3250F; 7855Document code: A