1999年3月

纳米SiC蓝光发射的研究*

刘渝珍 黄允兰^{a)} 石万全 刘世祥 姚德成 张庶元^{a)} 韩 —琴

^{a)}(中国科学技术大学,合肥 230026)

陆忠乾 谭寿洪 江东亮

摘要 在4.68eV 的激光激发下,室温 CVD 合成的纳米 SiC 粉体,可发射475nm 的蓝光, 经600~1100 在 N₂气氛下进行快速退火(RT A)处理,其荧光强度随退火温度升高而增强, 当 T 900 时,荧光强度下降,但发光峰位与退火温度无关.通过 XRD、IR、TEM、XPS 等 研究,认为纳米 SiC 中与氧有关的缺陷可能是引起475nm 蓝光发射的主要原因.

关键词 纳米 SiC 粉体, 蓝色荧光, 快速热退火(RTA)

1引言

由于纳米 SiC 材料的性能特别是在高温强度和抗蠕变性等方面,明显优于常规 SiC 材料,因而过去几年已有许多关于纳米 SiC 粉料的合成、制备、性能及微结构的研究报 $j^{[1^{-3]}}$.但对其光学性质的研究尚未见报道.众所周知,SiC 是宽禁带半导体材料,已有研究表明 -SiC 体材料只有在低温下才能发射出微弱的蓝色荧光^[4],1995年 A.O. Konstantinov^[5]等报道通过 C⁺注入硅形成多孔的 -SiC 能发出较强的蓝色荧光.最近以 六甲基二硅胺烷作原料,用 CVD 方法在1100 合成了粒径为8~10nm 的纳米 SiC 粉料, 有趣的是在室温下,在波长为265nm 的激光激发下,从该粉体中观测到了稳定的峰位位 于475nm(2.61eV)的蓝色荧光发射,此峰位高于 -SiC 的能带宽度2.2eV^[6].将此纳米粉 体在 N₂气氛下在600~1100 进行快速热退火(RTA)处理,发现随退火温度 *T* 升高,其 发光强度迅速增加.当*T* 900 时发光强度下降,但峰位不变.现报道此实验结果,并 对其发光机理进行初步探讨.

2 实验过程

从提高产率,降低成本与减少环境污染角度考虑,采用(Si(CH₃)₃)₂NH(六甲基二硅 胺烷)与高纯氢气,在真空度为0.7~1.2Pa,1100 下用 CVD 方法合成了 SiC 纳米粉 料.将合成的纳米粉末置于 KST-2型快速热退火设备中,在4L/min 干燥氮气保护下,分 别进行了快速热退火(RTA)处理.升温速率为200 /s,样品分别升至600 、700 、 800 、900 、1000 、1100 恒温5秒,然后降至室温.另外将部分原始粉料在1500 , Ar 气氛下保温4小时进行高温晶化处理.将部分高温晶化处理后的粉体置入 HF H₂O= 1 50的酸电解质中进行超声波清洗,然后用去离子水经过多次洗涤后得到经腐蚀后的样 品.采用 Nd³⁺ YAG 泵浦染料激光器(波长为265nm); ESCALAB5 X-ray 光电子能谱

* 中国科技大学研究生院院长择优基金资助 1998年2月6日收到 仪; D/max TA转靶 X 射线衍射仪; M agna HR 750红外谱仪; H 800透射电子显微镜, 对上述样品分别进行了光致发光谱(PL)测量及结构和表面成份的分析.

3 结果与分析

经 XRD 和 T EM 分析表明, 合成的原始粉末属无定形, 颗粒形状近似为圆球形, 粒径范围约在8~10nm, 经高温晶化处理后的粉体, 其颗粒长大成20~40nm, 并以 -SiC 相结构形式出现(图1).

(a) as-synthesized (b) heat treated at 1500 in Ar.

在室温下,从原始粉体经 RT A 热处理的样品和经高温晶化处理后的粉末中,尽管 粉料的颗粒尺寸不一样,但都观察到一个位于2.61eV 的峰位不变的蓝色荧光.从图2样 品的光致发光谱(PL)可看到,虽然发光峰位与退火温度无关,但其荧光强度却随着退火 温度的变化而有明显的差异:随着退火温度的升高,其荧光强度增强,经800 快速退火 后的样品强度最大,为原始粉料的9.3倍,当退火温度 T 900 后,其荧光强度迅速下 降;经1100 快速退火后,样品的荧光强度下降到原始粉料的1/5.从高温晶化后的粉体 中也测得一峰位仍位于2.61eV 的微弱的蓝色荧光.但经 HF 腐蚀后的样品,其荧光发射 十分微弱,可认为其荧光基本猝灭.这些实验结果表明不能用量子限制效应来解释实验 所获得的纳米 SiC 粉体与退火温度无关的蓝色荧光发射现象.上述样品的红外透射谱 (IR)显示出(如图3所示):所有样品在800~1080cm⁻¹之间有一个展宽的 Si-C^[7]伸缩振动 吸收峰.从图中可看出:除了经 HF 腐蚀后的粉体外,其余样品在1070cm⁻¹和466cm⁻¹附 近都观测到表征 SiO_x(x 2)的 Si-O-Si 非对称伸展振动引起的吸收峰^[8],说明原始粉 体和经热处理的粉末中都含有 SiO_x(x 2),这也是使得这些样品的 IR 谱图在800~ 1080cm⁻¹呈现一个展宽的吸收峰的主要原因.但经 HF 腐蚀后的粉体、其表征 SiO_x 的 1070cm⁻¹吸收峰消失,表明经 HF 腐蚀后样品中的 SiO_{*} 大大减少,而经 HF 腐蚀后样品的荧光猝灭,这提示出样品蓝色荧光发射很可能与纳米 SiC 粉体颗粒界面处的 SiO_{*} 有关.

样品表面除有 Si, C 元素外, 还有一定含量的 O 和少量 N 元素, 这主要是纳米 SiC 粉体置于空气中的吸附以及由于纳米颗粒的巨大活性, 引起了纳米颗粒在空气中迅速氧化所至. 从表1可以看到, 经 HF 腐蚀后的粉末表面除了其氧含量大大减少外, 还有少量的 F 元素.

表1 XPS 测量的样品的各元素含量

Table 1 Atomic percent of elements of XPS for SiC.

展子 元素 样 日 分 比	Si2p	C _{1s}	O _{1s}	N 1s	F 1s
原始粉体	37.5	39.8	14.5	8.2	0.0
800 RTA 后的粉体	42.8	30. 5	16.9	9.8	0.0
HF 腐蚀后的粉体	46.3	37.3	7. 9	5.6	2.9

图4是上述样品的 Si_{2p} 能级的光电子能谱,图中所标的能量线分别相应于 SiC 和 SiO_2 中 Si_{2p} 的结合能101. OeV 和103. $8eV^{[9]}$.从图中清楚看到,随着退火温度的升高,引起了

相应的 Si2。峰值由低能端的 SiC 向高能端的 SiO2移 动. 表明由于退火温度不同, 引起粉末表面有不同 的氧化态和不同含量的 SiO_x 存在. 最有趣的是基 本上不发射荧光的经 HF 腐蚀后的粉末表面.其 SiOx 最少. 进一步证实了所观察到的蓝色荧光发射 主要来源于纳米 SiC 颗粒界面处的 SiO*. 而随着退 要 火温度的不同其蓝色荧光强度不同。这一结果。预 示了所观察到的蓝色发光峰可能与氧化硅中的与氧 相关的缺陷有关。在过去的几年里。人们对多孔 硅,纳米硅的光致发光性质进行了大量深入的研 究,从已报道的文献看,人们认为在纳米晶硅界面 处的 $-SiO_2$ 中存在着与氧有关的大量缺陷态. 如非 桥键氧空位,氧空位缺陷 Ei,填隙氧原子等,这些 不同的缺陷在紫外光激发下可能发射不同能带的发 光带^[10,11].这可能是由于制备工艺条件和纳米粉末 表面的巨大活性等原因, 使得所获得的原始粉体颗 粒表面的硅悬挂键与氧形成了氧空位缺陷, 这是 2. 61eV 蓝光发射的来源. 这与 Tohomon^[12]等在理 论和实验上证明2.65eV 的发光带与氧空位缺陷有 关的报道相近.SiC 纳米粉体的发光强度随退火温 度的不同而不同、表明不同温度下的热处理、使得 纳米粉末界面处的缺陷发生变化. 当800 退火后. 粉体发光强度的增强。可能是由于快速退火使得纳 形成较多的氧空位缺陷,因此在纳米 SiC 样品红外

图4 纳米 SiC 粉体的 XPS 的 Si2p峰的移 动

- (a) 原始粉体
- (b) 经800 快速退火处理
- (c) 经1500 高温晶化后的粉体
- (d) 高温晶化后经 HF H₂O 腐蚀
- Fig. 4 Peak shifts for Si2p spectra of nanometer SiC powder in XPS.
 - (a) as-synthesized
 - (b) after RTA at 800
 - (c) heat treated at 1500 in Ar
 - (d) etched in HF H₂O after heat treated at 1500 in Ar

吸收谱(见图3)中,引起了表征 Si = O = Si 的吸收峰从原始粉末的1076cm⁻¹移到1065cm⁻¹,同时在图3中还清楚看到高温晶化处理后的样品该吸收峰移到了1139cm⁻¹处.表明经高温退火引起了 Si = O 键断裂,产生大量非辐射复合中心.这是导致纳米SiC 粉体蓝色荧光下降的主要原因. 红外谱的这一变化与 S. Hayashi^[13]等人研究 SiO_{*} 薄膜在高温下退火的实验规律十分相似.

综上所述,在1100 用 CVD 合成的纳米 SiC 粉体,在室温下观测到的475nm 的蓝 色荧光发射,其发光强度随退火温度的增加而增加,但发光峰位与退火温度无关,实验 结果表明不能用量子限制效应来解释它的蓝色荧光发射,而纳米 SiC 颗粒界面处的 SiO^{*} 中与氧有关的氧空位缺陷是获得蓝色光致发光的主要来源.

参考文献

- [1] Nihara K. J. Ceram. Soc. Jpn. 1991, 99:945.
- [2] Li Yali, Liang Yong, Zheng Feng et al, Inorg, Mater, 1996, 11: 162(in Chinese).
- [3] Bleiter H. Mater. Sci. Eng., 1982, 52:91.
- [4] Choyke W J, Patrick L. Phys. Rev. B, 1970, 2: 4959.
- [5] Konstantinov A O, Henry A, Harris C I et al, Appl. Phys. Lett., 1995, 66: 2250.
- [6] Philip H R, Taft E A. in Silicon carbide. (Pergamon, London, 1960), p366.
- [7] Bou cand P, Francis C, Larre A et al., Appl. Phys. Lett., 1995, 66(1):70.
- [8] Tsu D V, Lucovsky G, Mantini M J et al., J. Vac. Sci. Technol., 1987, A5(4):1998.
- [9] Yusuke Mizokawa, Shigemitsa Nakanishi, Osamu Komoda et al., J. Appl. Phys., 1990, 67(1): 264.
- [10] Stathis J H, Kastner M A. Phys. Rev. B., 1987, 35: 2972.
- [11] Muneknni S, Yamanaka T, Shimogaichi Y et al., J. Appl. Phys., 1990, 68: 1212.
- [12] Tomon R, Shimogaichi Y, Miznno H et al., Phys. Rev. Lett., 1989, 62: 1388.
- [13] Hayashi S, Nagareda T, Kanazawa Y et al., Jpn. J. Appl. Phys., 1993, 32: 3840.

A STUDY OF BLUE EMISSION FROM NANO SIC POWDERS

Liu Yuzhen Huang Yunlan^{a)} Shi Wanquan Liu Shixiang

Yao Decheng Zhang Shuyuan^{a)} Han Yiqin

(The Graduate School, University of Science and Technology of China, Beijing 100039) ^{a)}(University of Science and Technology of China, Hefei 230026)

Lu Zhongqian Tan Shouhong Jiang Dongliang

(Shanghai Institute of Ceramics Chinese, Chinese Academy of Sciences, Shanghai 200050)

Abstract

The nanometer SiC powders of $8 \sim 10$ nm were synthesized by CVD at 1100 . A blue luminescence peaked at 2.61eV (~475nm) were observed from the SiC powders at room temperature. The powders were annealed at 600 ~ 1000 in dry N₂ atmosphere by the rapid thermal annealing (RTA). The peak intensity of blue luminescent increases as RTA temperature and decreases when the annealing temperature is higher than 900 . With XRD, IR, TEM, XPS analysis, we concluded that the blue PL emission is caused by oxygen deficiency defects in the SiC/SiO_{*} interface.

Key words nanometer SiC powders, blue luminescence, rapid thermal annealing (RTA)