1999年3月

一步湿法化学刻蚀硅微尖冷阴极*

王维彪 金长春 梁静秋的 姜锦秀 刘乃康 姚劲松的

赵海峰 王永珍 范希武

(中国科学院长春物理研究所,长春 130021)

^{a)}(中国科学院长春光学精密机械研究所,长春 130022)

摘要 主要研究了湿法化学刻蚀硅微尖.采用各向同性腐蚀的方法在 111 晶面和 100 晶面的单晶硅衬底上制备了硅微尖.实验结果表明 111 晶面的硅衬底上容易制备顶端曲率 半径比较小的硅微尖.通过实验,调整了腐蚀剂的组成,最后得到曲率半径10~15_{nm} 的硅 微尖.

关键词 真空微电子, 硅微尖, 冷阴极

1引言

硅微尖场发射阵列是真空微电子器件的重要电子源.由于它和微电子集成工艺兼 容,加上硅工艺成熟,受到人们的极大重视.硅微尖的应用有许多方面:(1)硅微尖本身 就是一种重要的冷阴极;(2)在硅微尖表面覆盖其它电子发射材料;这样可以利用硅工 艺来制备其它材料的微尖.简化了制备工艺.如金刚石等.(3)重新对硅微尖表面进行 处理或修饰,如形成多孔硅层,形成异质结等.自从 H. F. Gray 制备出硅微尖阵列^[1], 现已发展了多种方法制备硅微尖阵列,比较典型的有干法刻蚀和湿法刻蚀.对于干法刻 蚀,获得的制备微尖的原坯比较好,容易得到曲率半径比较小的硅微尖阵列.工艺重复 可控.湿法刻蚀又分为各向同性和各相异性刻蚀.按照通常的方法,制备出硅微尖原坯 后,再将其氧化后进行腐蚀.本研究主要用一步湿法化学各向同性腐蚀制备硅微尖^[2], 可以省去中间氧化过程,而且制备的硅微尖曲率半径很小.这样在微尖顶端的局部电场 更为集中,可以降低硅微尖发射电子的外部电场.

2 硅微尖的制备过程

实验选用单面抛光 111 和 100 晶向的单晶硅衬底. 电阻率分别为13_{Ω cm} 和10_Ω cm. 具体工艺过程如下:

(1) 衬底的氧化:将硅片严格清洗后在950 的高温下通以湿氧进行氧化,水浴温度 约为95 ,氧气流量为0. 20L/min,氧化时间40分钟,氧化层厚度0. 4 μ m.

(2) 光刻: 然后用光刻胶掩膜光刻、显影并用 HF Xh H₄F Xh₂O = 3(ml) Xb(g) XlO(ml) 在常温下腐蚀去暴露的 SiO₂, 去胶后留下的图形为直径3μm 的 SiO₂圆型阵列, 圆心距为 15μm.

^{*} 国家自然科学基金资助项目(56972034) 1998年6月24日收到

(3)腐蚀剂的配制:采用的腐蚀剂有两种:一类为HFXhNO3Xhu3COOH.另一类为 HFXhNO3Xh2O.将样品放入溶液中进行刻蚀,时间根据需要确定.刻蚀出的微尖样品 用扫描电镜(SEM)进行观察.工艺过程如图1所示:

氧化

光刻

腐蚀

图1 微尖制备工艺示意图

Fig. 1 The illustration of Si-tips fabrication course.

3 结果与讨论

制备硅微尖的毛坯形状对硅微尖的质量有很大的关系,尤其是锥面的弯曲形状.凸面难以制备出高质量的硅微尖,直面也不理想,只有凹面的原坯才可以制备出顶端曲率 半径比较小的硅微尖.基于硅的腐蚀机理和几何原理,我们希望能制备出凹面的硅微尖 原坯,选择了 111 面单晶硅衬底制备硅微尖.

图2是硅在一类腐蚀液中腐蚀后的硅尖原坯的图像.腐蚀剂的组成比例是HFXHNO3 XCH3COOH= 2XY5XB.从图上可以看出,硅尖原坯的锥面是凹面,但是在上部有一段呈 圆柱形.这一段对制备微尖来说也并不有利,因为经过进一步氧化后或经一步腐蚀后会 形成针形,或者尖端不理想,如图3所示.我们在这种腐蚀剂中腐蚀出的硅尖原坯具备了 凹面,但还不算理想.对腐蚀剂进行改进^[2],将缓蚀剂CH3COOH改为去离子水H2O,并

图2 制备硅微尖原坯的 SEM 照片图3 并不理想的硅微尖的 SEM 照片Fig. 2 SEM image of Si-tip original shape.Fig. 3 SEM images of not ideal Si-tip.将 HF 的比例降低,在室温下,将刻好图形的硅衬底在腐蚀剂中进行腐蚀.腐蚀剂的组成比例是 HFXINO3XIH2O= 1.5XII5XI. 图4是经过50秒钟腐蚀后的硅尖原坯阵列和单个

微尖原坯的 SEM 照片.可以看出,硅尖原坯的凹面比在一类腐蚀剂中腐蚀出的硅尖原 坯有所改进.如果将这种硅尖原坯进一步腐蚀或氧化 sharp 后,制备出的硅微尖如图5所 示,用高分辨扫描电镜观察硅微尖的顶端曲率半径约为10~15nm.高度约为1.4μm.如 果对这种微尖进一步用干氧氧化,可以使微尖曲率半径进一步减小.

图4 硅尖原坯阵列和单个硅尖原坯的 SEM 照片

Fig. 4 SEM images of Si+tips original shape array and single Si+tip original shape.

- 图5 顶端曲率半径为10~15nm 的硅微尖的 SEM 像
- Fig. 5 Image of idea Si-tip with top radii about $10 \sim 15$ nm.

上面采用的是 111 晶向的硅衬 底. 对于用 111 晶向的硅衬底制备 硅微尖阵列,影响均匀性的因素主要 有衬底的晶向及光刻的均匀性. 在样 品中,通过扫描电镜观察,除因光刻 缺陷引起的极少数硅微尖不均匀以 外,绝大多数微尖都比较均匀. 对于

100 晶向的硅衬底,在两种腐蚀剂 中得出的结果基本相同,差异虽有但 不大,如图6所示.在腐蚀剂 HF W HNO³ W H³COOH= 2 W 5 W 中制备的 硅微尖顶端曲率半径为180nm,在腐 蚀剂 HF W HNO³ W $_{2}$ O = 1.5 W 5 W 中 制备的硅微尖顶端曲率半径为35nm.

这些结果和 111 晶面腐蚀的结果差异较大. 这就是说, 晶面不同, 腐蚀出的硅尖原坯形 状也不一样, 这可能是不同晶面的腐蚀速率差异所致.

在这两种腐蚀剂中, 111 和 100 硅衬底腐蚀速率 *R*(实验值)为: 腐蚀剂 HF W HNO₃ WCH₃COOH= 2 W 5 𝔅 中 *R*₁₀₀ = 1.48μm/min, *R*₁₁₁ = 1.26μm/min; 腐蚀剂 HF W HNO₃ W 2O= 1.5 W 5 𝔅 中, *R*₁₀₀ = 1.53μm/min, *R*₁₁₁ = 1.31μm/min. 腐蚀温度为25 . 可以看出 100 和 111 面的腐蚀速率有差异,这种差异在硅微尖的制备过程中反映出 来. 锥面形状的差别可能是由于不同晶面的腐蚀速率差异的整体表现. 虽然也有其它晶

a) 在腐蚀剂 HFXIINO₃CH₃COO= 2XII5X5中制备的硅微尖,

b) 在腐蚀剂 HFXIINO₃XII₂O= 1. 5XII5XII中制备的硅微尖

图6 100 晶面硅衬底制备的硅微尖

Fig. 6 Images of Si+tip fabricated on 100 oriented Si substrate.

a) In solution of HFXMNO3XCH3COOH= 2XW5XX5

b) In solution of HFXMANO₃XM₂O = 1.5XN5XB

面,但这两个面起着更主要的作用^[2]. 100 面在腐蚀过程中出现 111 面,而 111 面在 腐蚀过程中出现 100 面,这两个面的腐蚀速率的差异影响了锥面的形状.由于 111 面 的腐蚀速率小于 100 面的腐蚀速率,对于 111 面的硅衬底来说,制备硅尖的原坯就呈 凹面.对于 100 面的硅衬底来说,制备硅尖的原坯就呈直面或近似直面.在此基础上可 以制备带栅极结构的硅微尖冷阴极,具体方法可以参阅文献^[3,4].有关一步湿法刻蚀制 备的带栅极的硅微尖的场发射特性将另文报道.

4 结 论

通过实验对制备硅微尖的常用腐蚀剂和硅衬底晶向 100 和 111 进行了考察和选择,认为用 111 晶向的硅衬底在腐蚀剂 HF XIIN O₃ XII₂O 中更容易制备出高 aspect-ratio 的硅微尖.在腐蚀剂 HF XIIN O₃ XII₂O = 1.5 XI5 XI6 中用 111 硅衬底制备的硅微尖顶端曲 率半径可达10~15nm.

参考文献

- [1] Cray H F, Campisi G J, Greene R F. IEDM Tech. Dig., 1986, p. 776.
- [2] Huang Qing'an. Micro-machining technique, Published by Sciences Press, 1995, p11(in Chinese).
- [3] Zhu Chang chun, Guan Hui, Liu Weidong et al., J. Vac. Sci. Technol., 1997, p1682.
- [4] Campisi G J, Gray H F. Proc. Mat. Res. Soc. Symp., 1987, 76: 67.

FABRICATION OF SILICON TIPS BY ONE STEP WET CHEMICAL ETCHING

Wang Weibiao Jin Changchun Liang Jingqiu^{a)} Jiang Jinxiu Liu Naikang

Yao Jinsong^{a)} Zhao Haifeng Wang Yongzhen Fan Xiwu

(Changchun Institute of Physics, Chinese Academy of Sciences, Changchun 130021)

a) (Changchun Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Changchun 130022)

Abstract

We fabricated Si-tips by one step wet chemical etching 111 silicon substrate in solution of HF XMHNO₃ XMH₂O = 1.5 XM5 XM5. The radii of Si-tip's top about 10 ~ 15nm is gotten after experiment.

Key words vacuum microelectronics, Si-tip, cold cathode