1.浙江工业大学 化学工程学院, 浙江 杭州 310000
扫 描 看 全 文
Jing LIN, Kang SHAO, Kai WANG, et al. Synthesis of Near-infrared Persistent Luminescent Nanoprobe ZnGa2O4:Cr3+, Sn4+ and Detection of Fe3+ with Time-resolved Spectra Technique. [J]. Chinese Journal of Luminescence 41(6):734-743(2020)
Jing LIN, Kang SHAO, Kai WANG, et al. Synthesis of Near-infrared Persistent Luminescent Nanoprobe ZnGa2O4:Cr3+, Sn4+ and Detection of Fe3+ with Time-resolved Spectra Technique. [J]. Chinese Journal of Luminescence 41(6):734-743(2020) DOI: 10.3788/fgxb20204106.0734.
鉴于长余辉材料免实时激发特性可有效消除激发光源及复杂样品自体荧光的干扰,近红外长余辉材料在生物成像领域受到了广泛关注。但其在荧光传感应用方面的报道相对较少,尤其是利用长余辉纳米粒子来检测金属阳离子鲜有报道。本文采用水热法制备了Sn,4+,共掺的近红外长余辉纳米材料ZnGa,2,O,4,:Cr,3+,,Sn,4+,(ZGSC),再以包硅处理得到在水溶液中分散性良好的荧光探针ZnGa,2,O,4,:Cr,3+,,Sn,4+,@SiO,2,(ZGSC@SiO,2,)。基于Fe,3+,对长余辉材料ZGSC@SiO,2,的荧光猝灭效应,构建了一种选择性好、无背景干扰的近红外长余辉荧光探针ZGSC@SiO,2,,用于Fe,3+,的定量检测。采用时间分辨光谱可有效地消除背景干扰,实现了高信噪比检测,其线性范围为50~800 μmol/L,检出限为25.12 μmol/L。选取了3种补铁口服液作为实际样品,对其总铁含量以及Fe,3+,的含量进行检测,并进行了加标实验。实验结果表明,测定结果中总铁含量与标示值吻合;3种样品中总铁含量的加标回收率为99.00%~99.79%,相对标准偏差(RSD)为2.416%~3.808%;Fe,3+,含量的加标回收率为99.90%~102.69%,RSD为3.263%~4.296%,满足测定要求。根据样品中总铁含量和Fe,3+,含量,可计算得出Fe,2+,含量,因此该荧光传感体系具有可同时检测Fe,3+,与Fe,2+,的优点,可以用于补铁口服液中有效价态Fe,2+,的质量控制检测。
Since persistent luminescent materials are free from real time excitation, which can effectively eliminate the interference of excitation light source and auto-fluorescence from complex sample, near infrared persistent luminescent materials attract wide attentions in the field of biological imaging. However, there are relatively few reports on its application in fluorescence sensing, especially in metal cations detection. The near-infrared persistent luminescent nanophosphor ZnGa,2,O,4,:Cr,3+, Sn,4+, (ZGSC) was synthesized by hydrothermal method, and worked as fluorescent probe after coating with silicon ZnGa,2,O,4,:Cr,3+, Sn,4+,@SiO,2, (ZGSC@SiO,2,), which is well dispersed in an aqueous solution. Based on the phenomenon that the fluorescence of ZGSC@SiO,2, can be quenched by Fe,3+, a fluorescence sensing method with good selectivity and interference free was established for detecting Fe,3+,. The background interference can be effectively eliminated by using time-resolved spectrum, and high signal-to-noise ratio detection can be realized. The detection linear range is 50-800 μmol/L, and the detection limit is 25.12 μmol/L. Three kinds of iron supplement oral liquid were selected as the real samples, and the content of total iron and Fe,3+, were detected. The results show that the total iron contents in the three samples are matched well with the contents claimed in the labels. The average recoveries of total iron content in the three samples were 99.00%-99.79%, and the average recoveries of Fe,3+, content were 99.90%-102.69%. The RSDs of the total iron content are 2.416%-3.808% and the RSDs of the Fe,3+, content are 3.263%-4.296%, respectively. The Fe,2+, content can be obtained by subtracting Fe,3+, content from the total iron content in the sample. Therefore, the fluorescence sensing system can simultaneously detect Fe,3+, and Fe,2+, and can be used for quality control of the effective valence state Fe,2+, in iron supplement oral liquid.
近红外长余辉材料ZnGa2O4:Cr3+ Sn4+铁离子时间分辨光谱
near-infrared persistent luminescenceZnGa2O4:Cr3+ Sn4+Fe3+time-resolved spectra technique
ZHANG W, WANG R X, LI P, et al.. Fluorescence biosensor for Fe(Ⅲ) in cells based on Fe(Ⅲ) catalytze Au-nanocomposites release Au NPs[J].Sens. Actuators B, 2019, 286:16-21.
林烨, 李跃海, 杨辉, 等.大肠杆菌一步水热法制备氮掺杂碳量子点及其在铁离子检测中应用[J].分析化学, 2019, 47(5):748-755.
LIN Y, LI Y H, YANG H, et al.. One-step hydrothermal synthesis of nitrogen-doped carbon quantum dots withEscherichia coli for selective detection of ferric ion[J].Chin. J. Anal. Chem., 2019, 47(5):748-755. (in Chinese)
XU D D, LEI F, CHEN H H, et al.. One-step hydrothermal synthesis and optical properties of self-quenching-resistant carbon dots towards fluorescent ink and as nanosensors for Fe3+ detection[J].RSC Adv., 2019, 9(15):8290-8299.
GAO G, JIANG Y W, JIA H R, et al.. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots[J].Carbon, 2018, 134:232-243.
刘雪萍, 杨娟, 白燕.碳量子点荧光猝灭法检测铁离子[J].分析化学, 2016, 44(5):804-808.
LIU X P, YANG J, BAI Y. Determination of ferric ions based on fluorescence quenching of carbon dots[J].Chin. J. Anal. Chem., 2016, 44(5):804-808. (in Chinese)
林观样, 蔡文选.原子吸收分光光度法测定血红素口服液中铁的含量[J].海峡药学, 2006, 18(6):52-53.
LIN G X, CAI W X. Determination of iron in hemin oral solution by flame atomic absorption spectrometry[J].Strait Pharm. J., 2006, 18(6):52-53. (in Chinese)
CHEN X M, ZHAO Q C, ZOU W S, et al.. A colorimetric Fe3+ sensor based on an anionic poly(3, 4-propylenedioxythiophene) derivative[J].Sens. Actuators B, 2017, 244:891-896.
刘红英, 黄成, 戴大响, 等.一步法水热合成枸杞荧光碳点及对Fe3+的灵敏检测[J].分析化学, 2018, 46(10):1610-1617.
LIU H Y, HUANG C, DAI D X, et al.. Green synthesis of fluorescent carbon nanodots from Chinese wolfberry for selective and sensitive detection of ferric iron[J].Chin. J. Anal. Chem., 2018, 46(10):1610-1617. (in Chinese)
MA T T, ZHAO X, MATSUO Y, et al.. Fluorescein-based fluorescent porous aromatic framework for Fe3+ detection with high sensitivity[J].J. Mater. Chem. C, 2019, 7(8):2327-2332.
DIAO Q P, GUO H, YANG Z W, et al.. A rhodamine-6G-based "turn-on" fluorescent probe for selective detection of Fe3+ in living cells[J].Anal. Methods, 2019, 11(6):794-799.
ZHANG Y M, YANG X Y, ZHOU H C. Direct synthesis of functionalized PCN-333via linker design for Fe3+ detection in aqueous media[J].Dalton Trans., 2018, 47(34):11806-11811.
ZHAO W B, LIU K K, SONG S Y, et al.. Fluorescent nano-biomass dots:ultrasonic-assisted extraction and their application as nanoprobe for Fe3+ detection[J].Nanoscale Res. Lett., 2019, 14(1):130-1-9.
GUJAR V, SANGALE V, OTTOOR D. A selective turn off fluorescence sensor based on propranolol-SDS assemblies for Fe3+ detection[J].J. Fluoresc., 2019, 29(1):91-100.
ZHANG J Q, YAN J P, WANG Y T, et al.. One-step hydrothermal approach to synthesis carbon dots from d-sorbitol for detection of iron(Ⅲ) and cell imaging[J].J. Nanosci. Nanotechnol., 2018, 18(7):4457-4463.
JIANG K, WU Y C, WU H Q, et al.. A highly selective, pH-tolerable and fast-response fluorescent probe for Fe3+ based on star-shape benzothiazole derivative[J].J. Photochem. Photobiol. A, 2018, 350:52-58.
JAYAWEERA S, YIN K, HU X, et al.. Facile preparation of fluorescent carbon dots for label-free detection of Fe3+[J].J. Photochem. Photobiol. A, 2019, 370:156-163.
XU Y Y, ZHANG Z Z, LV P Y, et al.. Ratiometric fluorescence sensing of Fe2+/3+ by carbon dots doped lanthanide coordination polymers[J].J. Lumin., 2019, 205:519-524.
LIU Y Y, LIU J M, ZHANG D D, et al.. Persistent luminescence nanophosphor involved near-infrared optical bioimaging for investigation of foodborne probiotics biodistribution in vivo:a proof-of-concept study[J].J. Agric. Food Chem., 2017, 65(37):8229-8240.
潘再法, 金可燃, 严丽萍, 等.绿光SrAl2O4:Eu2+, Dy3+到近红外光LiGa5O8:Cr3+的余辉能量传递及近红外余辉增强[J].发光学报, 2018, 39(11):1496-1504.
PAN Z F, JIN K R, YAN L P, et al.. Enhancement of near-infrared afterglow by the persistent energy transfer from SrAl2O4:Eu2+, Dy3+ to LiGa5O8:Cr3+[J].Chin. J. Lumin., 2018, 39(11):1496-1504. (in Chinese)
SRIVASTAVA B B, KUANG A X, MAO Y B. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route[J].Chem. Commun., 2015, 51(34):7372-7375.
BESSIÈRE A, BENHAMOU R A, WALLEZ G, et al.. Site occupancy and mechanisms of thermally stimulated luminescence in Ca9Ln(PO4)7 (Ln=lanthanide)[J].Acta Mater., 2012, 60(19):6641-6649.
WU B Y, WANG H F, CHEN J T, et al.. Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles[J].J. Am. Chem. Soc., 2011, 133(4):686-688.
ZHANG X, XU N Y, RUAN Q, et al.. A label-free and sensitive photoluminescence sensing platform based on long persistent luminescence nanoparticles for the determination of antibiotics and 2, 4, 6-trinitrophenol[J].RSC Adv., 2018, 8(11):5714-5720.
ZHOU Z H, ZHENG W, KONG J T, et al.. Rechargeable and LED-activated ZnGa2O4:Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection[J].Nanoscale, 2017, 9(20):6846-6853.
WU S Q, CHI C W, YANG C X, et al.. Penetrating peptide-bioconjugated persistent nanophosphors for long-term tracking of adipose-derived stem cells with superior signal-to-noise ratio[J].Anal. Chem., 2016, 88(7):4114-4121.
蒋云霞, 钟国清.补铁剂的制备方法研究现状[J].化工中间体, 2009, 5(8):5-9.
JIANG Y X, ZHONG G Q. Investigating status on preparation of iron supplement agents[J].Chem. Intermed., 2009, 5(8):5-9. (in Chinese)
LI Y, LI Y Y, CHEN R C, et al.. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence[J].NPG Asia Mater., 2015, 7(5):e180-1-11.
GAO X X, ZHOU X, MA Y F, et al.. Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the "on-off-on" fluorescence principle[J].Appl. Surf. Sci., 2019, 469:911-916.
DONG Y Q, CAI J H, YOU X, et al.. Sensing applications of luminescent carbon based dots[J].Analyst, 2015, 140(22):7468-7486.
GE X Q, SUN L N, MA B B, et al.. Simultaneous realization of Hg2+ sensing, magnetic resonance imaging and upconversion luminescence in vitro and in vivo bioimaging based on hollow mesoporous silica coated UCNPs and ruthenium complex[J].Nanoscale, 2015, 7(33):13877-13887.
WEI R Y, WEI Z W, SUN L N, et al.. Nile red derivative-modified nanostructure for upconversion luminescence sensing and intracellular detection of Fe3+ and MR imaging[J].ACS Appl. Mater. Interfaces, 2016, 8(1):400-410.
0
Views
33
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution